dc.contributor.advisor | Rojas Arciniegas, Alvaro José | |
dc.contributor.advisor | Romero Cano, Victor | |
dc.contributor.author | Mercado Rivera, Francisco José | |
dc.date.accessioned | 2023-01-23T13:37:51Z | |
dc.date.available | 2023-01-23T13:37:51Z | |
dc.date.issued | 2022-12-07 | |
dc.identifier.uri | https://hdl.handle.net/10614/14506 | |
dc.description.abstract | Additive Manufacturing, also known as 3D printing, has been used to build objects in different application fields because it allows the creation of complex geometries easily, rapidly, at low cost, and versatile compared to traditional manufacturing. However, these objects still present some drawbacks, such as poor surface finishes, low mechanical performance, high variability in the dimensions, and several others. These drawbacks can be associated with some challenges that Additive Manufacturing machines still have, such as the number of processable materials, dependence on human supervision, or the lack of a control system during the manufacturing process.
The latter challenge mainly affects the machine's reliability and repeatability; therefore, this work aims to design and implement a multivariable closed-loop control system into an Additive Manufacturing process in order to supervise and control variables involved in the expected behavior of the manufacturing process.
For this purpose, this dissertation presents a characterization of three different Additive Manufacturing techniques and an exploratory study of closed-loop controls system applied in Additive Manufacturing. In addition, the design and integration of a multivariable closed-loop control system into an Additive Manufacturing machine and a study of how the performance of the pieces is affected by this integration of closed-loop control systems are presented.
The proposed approach of a multivariable closed-loop control system was integrated into a CORE XY Fused Filament Fabrication machine, which involved different feedback and control strategies, such as artificial intelligence control, and classic control, that allowed the creation of objects with better performance. | eng |
dc.format.extent | 179 páginas | spa |
dc.format.mimetype | application/pdf | eng |
dc.language.iso | eng | eng |
dc.publisher | Universidad Autónoma de Occidente | spa |
dc.rights | Derechos reservados - Universidad Autónoma de Occidente, 2022 | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | eng |
dc.subject | Doctorado en Ingeniería | spa |
dc.subject | Manufactura adictiva | spa |
dc.title | Design of a multivariable control system for an additive manufacturing process | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.description.notes | Tesis (Doctor en Ingeniería)-- Universidad Autónoma de Occidente, 2022 | spa |
dc.publisher.program | Doctorado en Ingeniería | spa |
dcterms.audience | Comunidad general | spa |
dc.subject.armarc | Impresión 3D | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor(a) en Ingeniería | spa |
dc.identifier.instname | Universidad Autónoma de Occidente | spa |
dc.identifier.reponame | Repositorio Educativo Digital | spa |
dc.identifier.repourl | https://red.uao.edu.co/ | spa |
dc.publisher.place | Cali | spa |
dc.relation.cites | Mercado Rivera, F. J. (2022) Design of a multivariable control system for an additive manufacturing process (Tesis). Universidad Autónoma de Occidente. Cali. Colombia. https://red.uao.edu.co/handle/10614/14506 | |
dc.relation.references | [1] Comisión Económica para América Latina y el Caribe (CEPAL), “Ciencia, tecnología e innovación en la economía digital. La situación de América Latina y el Caribe,” in Segunda Reunión de la Conferencia de Ciencia, Innovación y TIC de la CEPAL, 2016, p. 96. | |
dc.relation.references | [2] COLCIENCIAS Departamento Administrativo de Ciencia Tecnología e innovación., “Plan Nacional de Ciencia, Tecnología e Innovación para el Desarrollo del Sector de las Tecnologías de la Información y las Comunicaciones TIC 2017-2022.” p. 302, 2016. | |
dc.relation.references | [3] J. Francolí Fontrodona and R. Blanco Díaz, “Estado actual y perspectivas de la impresión en 3D,” Generalitat de Catalunya, p. 15, 2014, doi: 10.3354/meps07572. | |
dc.relation.references | [4] I. Gibson, D. Rosen, and B. Stucker, Additive Manufacturing: Technologies 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, 2nd ed., vol. 1. New York: Springer, 2015. doi: 10.1007/978-1-4939-2113-3. | |
dc.relation.references | [5] T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, and D. Hui, “Additive Manufacturing (3D printing): A review of materials, methods, applications and challenges,” Compos B Eng, vol. 143, no. December 2017, pp. 172–196, 2018, doi: 10.1016/j.compositesb.2018.02.012. | |
dc.relation.references | [6] M. Mani, B. Lane, A. Donmez, S. Feng, S. Moylan, and R. Fesperman, “Measurement Science Needs for Real-time Control of Additive Manufacturing Powder Bed Fusion Processes,” vol. 55, no. NIST IR 8036, pp. 1400–1418, 2015, [Online]. Available: http://nvlpubs.nist.gov/nistpubs/ir/2015/NIST.IR.8036.pdf | |
dc.relation.references | [7] W. Gao et al., “The status, challenges, and future of Additive Manufacturing in engineering,” CAD Computer Aided Design, vol. 69, pp. 65–89, 2015, doi: 10.1016/j.cad.2015.04.001. | |
dc.relation.references | 8] T. Pereira, J. v. Kennedy, and J. Potgieter, “A comparison of traditional manufacturing vs Additive Manufacturing, the best method for the job,” Procedia Manuf, vol. 30, pp. 11–18, 2019, doi: 10.1016/j.promfg.2019.02.003. | |
dc.relation.references | [9] “10 of the Biggest Challenges in Scaling Additive Manufacturing for Production [Expert Roundup] - AMFG.” https://amfg.ai/2019/10/08/10- of-the-biggest-challenges-in-scaling-additive-manufacturing-forproduction-expert-roundup/ (accessed Jun. 24, 2020). | |
dc.relation.references | [10] A. Dolenc, “An Overview Of Rapid Prototyping Technologies In Manufacturing,” Helsinki University of Technology, pp. 1–23, 1994. | |
dc.relation.references | [11] R. Radharamanan, “Additive Manufacturing in manufacturing education: A new course development and implementation,” 124th ASEE Annual Conference and Exposition, vol. 2017-June, 2017, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85030546544&partnerID=40&md5=52a59c40b6ae240978c8052b1fcd 619d | |
dc.relation.references | [12] J. Gardan, “Additive Manufacturing technologies: state of the art and trends,” Int J Prod Res, vol. 7543, no. August, pp. 1–15, 2015, doi: 10.1080/00207543.2015.1115909. | |
dc.relation.references | [13] ISO/ASTM, “Additive Manufacturing-General principles-Terminology,” ISO/ASTM 52900, 2015 [Online]. Available: www.iso.orgwww.astm.org | |
dc.relation.references | [14] ASTM International, “F2792-12a - Standard Terminology for Additive Manufacturing Technologies,” Rapid Manufacturing Association, pp. 10–12, 2013, doi: 10.1520/F2792-12A.2. | |
dc.relation.references | [15] I. v. Khudyakov, “Fast photopolymerization of acrylate coatings: Achievements and problems,” Prog Org Coat, vol. 121, pp. 151–159, 2018, doi: 10.1016/j.porgcoat.2018.04.030. | |
dc.relation.references | [16] H. Lee, C. H. J. Lim, M. J. Low, N. Tham, V. M. Murukeshan, and Y. J. Kim, “Lasers in Additive Manufacturing: A review,” International Journal of Precision Engineering and Manufacturing - Green Technology, vol. 4, no. 3, pp. 307–322, 2017, doi: 10.1007/s40684-017-0037-7. | |
dc.relation.references | [17] C. W. Hull, “Apparatus for production of three-dimensional objects by stereolithography,” US4575330, Mar. 11, 1986 [Online]. Available: https://patentimages.storage.googleapis.com/5c/a0/27/e49642dab99cf6/US4575330.pdf | |
dc.relation.references | [18] J.-C. André, A. le Mehauté, and O. de Witte, “Device for producing a model of an industrial part.,” FR2567668, Jul. 16, 1884 [Online]. Available: https://patents.google.com/patent/FR2567668A1/en | |
dc.relation.references | [19] 3D Systems Inc., “Our Story | 3D Systems,” 2017. https://www.3dsystems.com/ourstory?smtNoRedir=1&_ga=2.152734138.2087497582.1539697878- 1649132499.1539697878 (accessed Oct. 15, 2018). | |
dc.relation.references | [20] F. P. W. Melchels, J. Feijen, and D. W. Grijpma, “A review on stereolithography and its applications in biomedical engineering,” Biomaterials, vol. 31, no. 24, pp. 6121–6130, 2010, doi: 10.1016/j.biomaterials.2010.04.050. | |
dc.relation.references | [21] M. Sauerhoefer, “Method of post processing stereolithographically produced objects,” US5482659A, Sep. 01, 1996 [Online]. Available: https://patents.google.com/patent/US5482659?oq=Method+of+post+processing+stereolithographically+produced+objects | |
dc.relation.references | [22] N. N. Kumbhar and A. v. Mulay, “Post Processing Methods used to Improve Surface Finish of Products which are Manufactured by Additive Manufacturing Technologies: A Review,” Journal of The Institution of Engineers (India): Series C, vol. 99, no. 4, pp. 481–487, 2016, doi: 10.1007/s40032-016-0340-z. | |
dc.relation.references | [23] Carbon, “About Carbon - Who We Are and Our Vision.” https://www.carbon3d.com/about/ (accessed Oct. 16, 2018). | |
dc.relation.references | [24] R. Janusziewicz, J. R. Tumbleston, A. L. Quintanilla, S. J. Mecham, and J. M. DeSimone, “Layerless fabrication with continuous liquid interface production,” Proc Natl Acad Sci U S A, vol. 113, no. 42, pp. 11703– 11708, 2016, doi: 10.1073/pnas.1605271113. | |
dc.relation.references | 25] J. R. Tumbleston et al., “Continuous liquid interface production of 3D objects,” Science (1979), vol. 347, no. 6228, pp. 1349–1352, 2015, doi: 10.1126/science.aaa2397. | |
dc.relation.references | [26] F. Calignano et al., “Overview on Additive Manufacturing technologies,” Proceedings of the IEEE, vol. 105, no. 4, pp. 593–612, 2017, doi: 10.1109/JPROC.2016.2625098. | |
dc.relation.references | [27] W. Feng et al., “Development of a Drop-On-Demand Micro Dispensing System",” Materials Science Forum, vol. 507, pp. 25–30, 2006. | |
dc.relation.references | [28] F. Gao and A. A. Sonin., “Precise deposition of molten microdrops: the physics of digital microfabrication,” Royal Society, vol. 444, no. 1922, 1994. | |
dc.relation.references | [29] Stratasys, “3D Printing; Additive Manufacturing.” http://www.stratasys.com/ (accessed Oct. 17, 2018). | |
dc.relation.references | [30] T. T. Wohlers and T. Caffrey, Wohlers Report 2014: 3D Printing and Additive Manufacturing State of the Industry, Annual Worldwide Progress Report. Cary, NC, USA, 2014. | |
dc.relation.references | [31] T. Do, P. Kwon, and C. S. Shin, “Process development toward fulldensity stainless steel parts with binder jetting printing,” Int J Mach Tools Manuf, vol. 121, no. November 2016, pp. 50–60, 2017, doi: 10.1016/j.ijmachtools.2017.04.006. | |
dc.relation.references | [32] Y. Bai and C. B. Williams, “Binder jetting Additive Manufacturing with a particle-free metal ink as a binder precursor,” Mater Des, vol. 147, pp. 146–156, 2018, doi: 10.1016/j.matdes.2018.03.027. | |
dc.relation.references | [33] M. Ziaee and N. B. Crane, “Binder jetting: A review of process, materials, and methods,” Addit Manuf, vol. 28, no. June, pp. 781–801, 2019, doi: 10.1016/j.addma.2019.05.031. | |
dc.relation.references | [34] X. Xu, N. Perry, and Y. F. Zhao, “Energy and Material Flow Analysis of Binder-jetting Additive Manufacturing Processes,” Procedia CIRP, vol. 15, pp. 19–25, 2014, doi: 10.1016/j.procir.2014.06.030. | |
dc.relation.references | [35] S. S. Crump, “Apparatus and Method for Creating Three-Dimensional Object,” 5121329, Jun. 09, 1992 [Online]. Available: https://patents.google.com/patent/US5121329A/en | |
dc.relation.references | [36] O. A. Mohamed, S. H. Masood, and J. L. Bhowmik, “Optimization of fused deposition modeling process parameters: a review of current research and future prospects,” Adv Manuf, vol. 3, no. 1, pp. 42–53, 2015, doi: 10.1007/s40436-014-0097-7. | |
dc.relation.references | [37] H. Bikas, P. Stavropoulos, and G. Chryssolouris, “Additive Manufacturing methods and modeling approaches: A critical review,” International Journal of Advanced Manufacturing Technology, vol. 83, no. 1–4, pp. 389–405, 2016, doi: 10.1007/s00170-015-7576-2. | |
dc.relation.references | [38] R. Jones et al., “Reprap - The replicating rapid prototyper,” Robotica, vol. 29, pp. 177–191, 2011, doi: 10.1017/S026357471000069X. | |
dc.relation.references | [39] J. R. Dizon, A. H. Espera Jr, Chen Qiyi, and Advincula Rigoberto C., “Mechanical characterization of 3D-printed polymers,” Addit Manuf, vol. 20, pp. 44–67, Mar. 2018, doi: https://doi.org/10.1016/j.addma.2017.12.002. | |
dc.relation.references | [40] T. T. Wohlers and T. Caffrey, Wohlers Report 2011: Additive Manufacturing and 3D Printing State of the Industry Annual Worldwide Progress ReportTitle. Fort Collins, CO, US: Wohlers Associates, Inc., 2011. | |
dc.relation.references | [41] J. Sun, W. Zhou, D. Huang, J. Y. H. Fuh, and G. S. Hong, “An Overview of 3D Printing Technologies for Food Fabrication,” Food Bioproc Tech, vol. 8, no. 8, pp. 1605–1615, 2015, doi: 10.1007/s11947-015-1528-6. | |
dc.relation.references | [42] G. Vozzi, A. Previti, D. de Rossi, and A. Ahluwalia, “Microsyringe-Based Deposition of Two-Dimensional and Three-Dimensional Polymer Scaffolds with a Well-Defined Geometry for Application to Tissue Engineering,” Tissue Eng, vol. 8, no. 6, pp. 1089–1098, 2002, doi: 10.1089/107632702320934182. | |
dc.relation.references | [43] J. Sun, Z. Peng, W. Zhou, J. Y. H. Fuh, G. S. Hong, and A. Chiu, “A Review on 3D Printing for Customized Food Fabrication,” Procedia Manufacturing, vol. 1. pp. 308–319, 2015. doi: 10.1016/j.promfg.2015.09.057. | |
dc.relation.references | [44] N. Lobonnote, A. Ronnquist, B. Manum, and P. Ruther, “Additive construction: State-of-the-art, challenges and opportunities,” Autom Constr, vol. 72, pp. 347–366, 2016, doi: https://doi.org/10.1016/j.autcon.2016.08.026. | |
dc.relation.references | [45] W. E. Frazier, “Metal Additive Manufacturing: A review,” J Mater Eng Perform, vol. 23, no. 6, pp. 1917–1928, 2014, doi: 10.1007/s11665-014- 0958-z. | |
dc.relation.references | [46] H. Attar, M. Calin, L. C. Zhang, S. Scudino, and J. Eckert, “Manufacture by selective laser melting and mechanical behavior of commercially pure titanium,” Materials Science and Engineering A, vol. 593. pp. 170–177, 2014. doi: 10.1016/j.msea.2013.11.038. | |
dc.relation.references | [47] Y. Oshida, “10 - Fabrication Technologies,” in Bioscience and Bioengineering of Titanium Materials , 2nd ed., Oxford: Elsevier, 2013, pp. 303–340. doi: https://doi.org/10.1016/B978-0-444-62625-7.00010-8. | |
dc.relation.references | [48] G. Casalino, S. L. Campanelli, N. Contuzzi, and A. D. Ludovico, “Experimental investigation and statistical optimisation of the selective laser melting process of a maraging steel,” Opt Laser Technol, vol. 65, pp. 151–158, 2015, doi: 10.1016/j.optlastec.2014.07.021. | |
dc.relation.references | [49] J. P. Kruth, L. Froyen, J. van Vaerenbergh, P. Mercelis, M. Rombouts, and B. Lauwers, “Selective laser melting of iron-based powder,” J Mater Process Technol, vol. 149, no. 1–3, pp. 616–622, 2004, doi: 10.1016/j.jmatprotec.2003.11.051. | |
dc.relation.references | [50] W. Meiners, K. D. Wissenbach, and A. D. Gasser, “Shaped body especially prototype or replacement part production,” DE19649849C1, Dec. 02, 1998 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | eng |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.subject.proposal | Additive Manufacturing | eng |
dc.subject.proposal | 3D printing | eng |
dc.subject.proposal | Control system | eng |
dc.subject.proposal | Closed-loop control system | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | eng |
dc.type.content | Text | eng |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | eng |
dc.type.redcol | https://purl.org/redcol/resource_type/TD | eng |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | eng |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | eng |
dc.type.version | info:eu-repo/semantics/submittedVersion | eng |