Show simple item record

dc.contributor.authorParedes Valencia, Carlos Mario
dc.contributor.authorMartínez Castro, Diego
dc.contributor.authorIbarra-Junquera, Vrani
dc.contributor.authorGonzález Potes, Apolinar
dc.description.abstractNew applications of industrial automation request great flexibility in the systems, supported by the increase in the interconnection between its components, allowing access to all the information of the system and its reconfiguration based on the changes that occur during its operations, with the purpose of reaching optimum points of operation. These aspects promote the Smart Factory paradigm, integrating physical and digital systems to create smarts products and processes capable of transforming conventional value chains, forming the Cyber-Physical Systems (CPSs). This flexibility opens a large gap that affects the security of control systems since the new communication links can be used by people to generate attacks that produce risk in these applications. This is a recent problem in the control systems, which originally were centralized and later were implemented as interconnected systems through isolated networks. To protect these systems, strategies that have presented acceptable results in other environments, such as office environments, have been chosen. However, the characteristics of these applications are not the same, and the results achieved are not as expected. This problem has motivated several efforts in order to contribute from different approaches to increase the security of control systems. Based on the above, this work proposes an architecture based on artificial neural networks for detection and isolation of cyber attacks Denial of Service (DoS) and integrity in CPS. Simulation results of two test benches, the Secure Water Treatment (SWaT) dataset, and a tanks system, show the effectiveness of the proposal. Regarding the SWaT dataset, the scores obtained from the recall and F1 score metrics was 0.95 and was higher than other reported works, while, in terms of precision and accuracy, it obtained a score of 0.95 which is close to other proposed methods. With respect to the interconnected tank system, scores of 0.96, 0.83, 0.81, and 0.83 were obtained for the accuracy, precision, F1 score, and recall metrics, respectively. The high true negatives rate in both cases is noteworthy. In general terms, the proposal has a high effectiveness in detecting and locating the proposed attacksspa
dc.format.extent28 páginasspa
dc.rightsDerechos reservados - MDPI, 2021spa
dc.titleDetection and isolation of dos and integrity cyber attacks in cyber-physical systems with a neural network-based architectureeng
dc.typeArtículo de revistaspa
dcterms.audienceComunidad en generalspa
dc.subject.armarcDetección de anomalías (Seguridad informática)spa
dc.subject.armarcRedes neuronales (Computadores)spa
dc.subject.armarcAnomaly detection (Computer security)eng
dc.subject.armarcNeural networks (Computer science)eng
dc.identifier.instnameUniversidad Autónoma de Occidentespa
dc.identifier.reponameRepositorio Educativo Digitalspa
dc.relation.citesParedes Valencia, C. M., Martínez Castro, D., Ibarra Junquera, V., González Potes, A. (2021). Detection and isolation of DoS and integrity cyber attacks in Cyber-Physical Systems with a Neural network-based architecture. Electronics. Vol 10 (18), pp. 1-28.
dc.relation.references1. Vale, Z.A.; Morais, H.; Silva, M.; Ramos, C. Towards a future SCADA. In Proceedings of the 2009 IEEE Power Energy Society General Meeting, Calgary, AB, Canada, 26–30 July 2009; pp. 1–7. [CrossRef]eng
dc.relation.references2. Humayed, A.; Lin, J.; Li, F.; Luo, B. Cyber-Physical Systems Security—A Survey. IEEE Internet Things J. 2017, 4, 1802–1831. [CrossRef]eng
dc.relation.references3. Cardenas, A.; Amin, S.; Lin, Z.S.; Huang, Y.; Huang, C.Y.; Sastry, S. Attacks against process control systems: Risk assessment, detection, and response. In Proceedings of the 6th ACM Symposium on Information, Computer and Communications Security, Hong Kong, China, 22–24 March 2011; pp. 355–366. [CrossRef]eng
dc.relation.references4. Shoukry, Y.; Chong, M.; Wakaiki, M.; Nuzzo, P.; Sangiovanni-Vincentelli, A.L.; Seshia, S.A.; Hespanha, J.P.; Tabuada, P. SMT-Based Observer Design for Cyber-Physical Systems under Sensor Attacks. In Proceedings of the 2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS), Vienna, Austria, 11–14 April 2016; pp. 1–10. [CrossRef]eng
dc.relation.references5. Fawzi, H.; Tabuada, P.; Diggavi, S. Security for control systems under sensor and actuator attacks. In Proceedings of the 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), Maui, HI, USA, 10–13 December 2012; pp. 3412–3417. [CrossRef]eng
dc.relation.references6. Januário, F.; Cardoso, A.; Gil, P. A Distributed Multi-Agent Framework for Resilience Enhancement in Cyber-Physical Systems. IEEE Access 2019, 7, 31342–31357. [CrossRef]eng
dc.relation.references7. Challa, S.; Das, A.K.; Gope, P.; Kumar, N.; Wu, F.; Vasilakos, A.V. Design and analysis of authenticated key agreement scheme in cloud-assisted cyber–physical systems. Future Gener. Comput. Syst. 2020, 108, 1267–1286. [CrossRef]eng
dc.relation.references8. Kim, K.D.; Kumar, P. An Overview and Some Challenges in Cyber-Physical Systems. J. Indian Inst. Sci. 2013, 93, 341–352.eng
dc.relation.references9. Hink, R.C.B.; Goseva-Popstojanova, K. Characterization of Cyberattacks Aimed at Integrated Industrial Control and Enterprise Systems: A Case Study. In Proceedings of the 2016 IEEE 17th International Symposium on High Assurance Systems Engineering (HASE), Orlando, FL, USA, 7–9 January 2016; pp. 149–156. [CrossRef]eng
dc.relation.references10. Ahmadian, M.M.; Shajari, M.; Shafiee, M.A. Industrial control system security taxonomic framework with application to a comprehensive incidents survey. Int. J. Crit. Infrastruct. Prot. 2020, 29, 100356. [CrossRef]eng
dc.relation.references11. Slay, J.; Miller, M. Lessons Learned from the Maroochy Water Breach; Goetz, E., Shenoi, S., Eds.; Critical Infrastructure Protection; Springer: Boston, MA, USA, 2008; pp. 73–82.eng
dc.relation.references12. Moore, D.; Paxson, V.; Savage, S.; Shannon, C.; Staniford, S.; Weaver, N. Inside the Slammer worm. IEEE Secur. Priv. 2003, 1, 33–39. [CrossRef]eng
dc.relation.references13. Nicholson, A.; Webber, S.; Dyer, S.; Patel, T.; Janicke, H. SCADA security in the light of Cyber-Warfare. Comput. Secur. 2012, 31, 418–436. [CrossRef]eng
dc.relation.references14. Daniela, T. Communication security in SCADA pipeline monitoring systems. In Proceedings of the 2011 RoEduNet International Conference 10th Edition: Networking in Education and Research, Iasi, Romania, 23–25 June 2011; pp. 1–5. [CrossRef]eng
dc.relation.references15. Mitchell, R.; Chen, I.R. A Survey of Intrusion Detection Techniques for Cyber-Physical Systems. ACM Comput. Surv. (CSUR) 2014, 46. [CrossRef]eng
dc.relation.references16. Deorankar, A.V.; Thakare, S.S. Survey on Anomaly Detection of (IoT)- Internet of Things Cyberattacks Using Machine Learning. In Proceedings of the 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 11–13 March 2020; pp. 115–117. [CrossRef]eng
dc.relation.references17. Miao, K.; Shi, X.; Zhang, W.A. Attack signal estimation for intrusion detection in industrial control system. Comput. Secur. 2020, 96, 101926. [CrossRef]eng
dc.relation.references18. Justin, V.; Marathe, N.; Dongre, N. Hybrid IDS using SVM classifier for detecting DoS attack in MANET application. In Proceedings of the 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 10–11 February 2017; pp. 775–778.eng
dc.relation.references19. Zhang, D.; Tang, D.; Tang, L.; Dai, R.; Chen, J.; Zhu, N. PCA-SVM-Based Approach of Detecting Low-Rate DoS Attack. In Proceedings of the 2019 IEEE 21st International Conference on High Performance Computing and Communications, Zhangjiajie, China, 10–12 August 2019; pp. 1163–1170.eng
dc.relation.references20. Theissler, A. Anomaly detection in recordings from in-vehicle networks. Big Data Appl. 2014, 23, 26.eng
dc.relation.references21. Karimipour, H.; Dinavahi, V. Robust Massively Parallel Dynamic State Estimation of Power Systems Against Cyber-Attack. IEEE Access 2018, 6, 2984–2995. [CrossRef]eng
dc.relation.references22. Dudek, D. Collaborative detection of traffic anomalies using first order Markov chains. In Proceedings of the 2012 Ninth International Conference on Networked Sensing (INSS), Antwerp, Belgium, 11–14 June 2012; pp. 1–4.eng
dc.relation.references23. Alpaño, P.V.S.; Pedrasa, J.R.I.; Atienza, R. Multilayer perceptron with binary weights and activations for intrusion detection of Cyber-Physical systems. In Proceedings of the Tencon 2017—2017 IEEE Region 10 Conference, Penang, Malaysia, 5–8 November 2017; pp. 2825–2829. [CrossRef]eng
dc.relation.references24. Khan, I.A.; Pi, D.; Khan, Z.U.; Hussain, Y.; Nawaz, A. HML-IDS: A Hybrid-Multilevel Anomaly Prediction Approach for Intrusion Detection in SCADA Systems. IEEE Access 2019, 7, 89507–89521. [CrossRef]eng
dc.relation.references25. Farivar, F.; Haghighi, M.S.; Jolfaei, A.; Alazab, M. Artificial Intelligence for Detection, Estimation, and Compensation of Malicious Attacks in Nonlinear Cyber-Physical Systems and Industrial IoT. IEEE Trans. Ind. Inform. 2020, 16, 2716–2725. [CrossRef]eng
dc.relation.references26. Li, F.; Li, Q.; Zhang, J.; Kou, J.; Ye, J.; Song, W.; Mantooth, H.A. Detection and Diagnosis of Data Integrity Attacks in Solar Farms Based on Multilayer Long Short-Term Memory Network. IEEE Trans. Power Electron. 2021, 36, 2495–2498. [CrossRef]eng
dc.relation.references27. Wan, Y.; Cao, J.; Chen, G.; Huang, W. Distributed Observer-Based Cyber-Security Control of Complex Dynamical Networks. IEEE Trans. Circuits Syst. I Regul. Pap. 2017, 64, 2966–2975. [CrossRef]eng
dc.relation.references28. Pasqualetti, F.; Dörfler, F.; Bullo, F. Attack Detection and Identification in Cyber-Physical Systems. IEEE Trans. Autom. Control 2013, 58, 2715–2729. [CrossRef]eng
dc.relation.references29. Do, V.L. Statistical detection and isolation of cyber-physical attacks on SCADA systems. In Proceedings of the IECON 2017—43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; pp. 3524–3529.eng
dc.relation.references30. Lopez Rodriguez, V.M.; Cheng, A.M.K.; Doan, B. Work-in-Progress: Combining Two Security Methods to Detect Versatile Integrity Attacks in Cyber-Physical Systems. In Proceedings of the 2019 IEEE Real-Time Systems Symposium (RTSS), Hong Kong, China, 3–6 December 2019; pp. 596–599. [CrossRef]eng
dc.relation.references31. Boudehenn, C.; Cexus, J.; Boudraa, A.A. A Data Extraction Method for Anomaly Detection in Naval Systems. In Proceedings of the 2020 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA), Dublin, Ireland, 15–19 June 2020; pp. 1–4. [CrossRef]eng
dc.relation.references32. Cao, L.; Jiang, X.; Zhao, Y.; Wang, S.; You, D.; Xu, X. A Survey of Network Attacks on Cyber-Physical Systems. IEEE Access 2020, 8, 44219–44227. [CrossRef]eng
dc.relation.references33. Zarpelão, B.B.; Miani, R.S.; Kawakani, C.T.; de Alvarenga, S.C. A survey of intrusion detection in Internet of Things. J. Netw. Comput. Appl. 2017, 84, 25–37. [CrossRef]eng
dc.relation.references34. Tan, S.; Guerrero, J.M.; Xie, P.; Han, R.; Vasquez, J.C. Brief Survey on Attack Detection Methods for Cyber-Physical Systems. IEEE Syst. J. 2020,14, 5329–5339. [CrossRef]eng
dc.relation.references35. Siemens. Primer for Cybersecurity in Industrial Automation; Siemens: Munich, Germany, 2019.eng
dc.relation.references36. Sicari, S.; Rizzardi, A.; Grieco, L.; Coen-Porisini, A. Security, privacy and trust in Internet of Things: The road ahead. Comput. Netw. 2015, 76, 146–164. [CrossRef]eng
dc.relation.references37. Cómbita, L.F.; Cárdenas, A.A.; Quijano, N. Mitigation of sensor attacks on legacy industrial control systems. In Proceedings of the 2017 IEEE 3rd Colombian Conference on Automatic Control (CCAC), Cartagena, Colombia, 18–20 October 2017; pp. 1–6. [CrossRef]eng
dc.relation.references38. Li, Y.; Li, J.; Luo, X.; Wang, X.; Guan, X. Cyber Attack Detection and Isolation for Smart Grids via Unknown Input Observer. In Proceedings of the 2018 37th Chinese Control Conference (CCC), Wuhan, China, 25–27 July 2018; pp. 6207–6212. [CrossRef]eng
dc.relation.references39. Wang, Z.; Zhao, Y.; Yang, K.; Yao, J.; Ding, Z.; Zhang, K. UIO-based Cyber Attack Detection and Mitagation Scheme for Load Frequency Control System. In Proceedings of the 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE), Xiamen, China, 18–20 October 2019; pp. 1257–1262. [CrossRef]eng
dc.relation.references40. Valencia, C.M.P.; Alzate, R.E.; Castro, D.M.; Bayona, A.F.; García, D.R. Detection and isolation of DoS and integrity attacks in Cyber-Physical Microgrid System. In Proceedings of the 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC), Medellin, Colombia, 15–18 October 2019; pp. 1–6. [CrossRef]eng
dc.relation.references41. Shin, J.; Baek, Y.; Lee, J.; Lee, S. Cyber-Physical Attack Detection and Recovery Based on RNN in Automotive Brake Systems. Appl. Sci. 2019, 9, 82. [CrossRef]eng
dc.relation.references42. Xie, X.; Wang, B.; Wan, T.; Tang, W. Multivariate Abnormal Detection for Industrial Control Systems Using 1D CNN and GRU. IEEE Access 2020, 8, 88348–88359. [CrossRef]eng
dc.relation.references43. Siegel, B. Industrial Anomaly Detection: A Comparison of Unsupervised Neural Network Architectures. IEEE Sens. Lett. 2020, 4, 1–4. [CrossRef]eng
dc.relation.references44. Bernieri, G.; Conti, M.; Turrin, F. Evaluation of Machine Learning Algorithms for Anomaly Detection in Industrial Networks. In Proceedings of the 2019 IEEE International Symposium on Measurements Networking (M N), Catania, Italy, 8–10 July 2019; pp. 1–6. [CrossRef]eng
dc.relation.references45. Sokolov, A.N.; Pyatnitsky, I.A.; Alabugin, S.K. Research of Classical Machine Learning Methods and Deep Learning Models Effectiveness in Detecting Anomalies of Industrial Control System. In Proceedings of the 2018 Global Smart Industry Conference (GloSIC), Chelyabinsk, Russia, 13–15 November 2018; pp. 1–6. [CrossRef]eng
dc.relation.references46. Elmrabit, N.; Zhou, F.; Li, F.; Zhou, H. Evaluation of Machine Learning Algorithms for Anomaly Detection. In Proceedings of the 2020 International Conference on Cyber Security and Protection of Digital Services (Cyber Security), Dublin, Ireland, 15–19 June 2020; pp. 1–8. [CrossRef]eng
dc.relation.references47. Vinayakumar, R.; Alazab, M.; Soman, K.P.; Poornachandran, P.; Al-Nemrat, A.; Venkatraman, S. Deep Learning Approach for Intelligent Intrusion Detection System. IEEE Access 2019, 7, 41525–41550. [CrossRef]eng
dc.relation.references48. Kim, D.E.; Gofman, M. Comparison of shallow and deep neural networks for network intrusion detection. In Proceedings of the 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, Nevada, USA, 8–10 January 2018; pp. 204–208. [CrossRef]eng
dc.relation.references49. Nie, J.; Ma, P.; Wang, B.; Su, Y. A Covert Network Attack Detection Method Based on LSTM. In Proceedings of the 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 12–14 June 2020; pp. 1690–1693. [CrossRef]eng
dc.relation.references50. Javed, A.R.; Usman, M.; Rehman, S.U.; Khan, M.U.; Haghighi, M.S. Anomaly Detection in Automated Vehicles Using Multistage Attention-Based Convolutional Neural Network. IEEE Trans. Intell. Transp. Syst. 2020. [CrossRef]eng
dc.relation.references51. Checkoway, S.; McCoy, D.; Kantor, B.; Anderson, D.; Shacham, H.; Savage, S.; Koscher, K.; Czeskis, A.; Roesner, F.; Kohno, T. Comprehensive Experimental Analyses of Automotive Attack Surfaces. In Proceedings of the 20th USENIX Conference on Security, San Francisco, CA, USA, 8–12 August 2011; p. 6.eng
dc.relation.references52. Liagkou, V.; Kavvadas, V.; Chronopoulos, S.K.; Tafiadis, D.; Christofilakis, V.; Peppas, K.P. Attack Detection for Healthcare Monitoring Systems Using Mechanical Learning in Virtual Private Networks over Optical Transport Layer Architecture. Computation 2019, 7, 24. [CrossRef]eng
dc.relation.references53. da Costa, K.A.; Papa, J.P.; Lisboa, C.O.; Munoz, R.; de Albuquerque, V.H.C. Internet of Things: A survey on machine learningbased intrusion detection approaches. Comput. Netw. 2019, 151, 147–157. [CrossRef]eng
dc.relation.references54. Tabassum, A.; Erbad, A.; Guizani, M. A Survey on Recent Approaches in Intrusion Detection System in IoTs. In Proceedings of the 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC), Tangier, Morocco, 24–28 June 2019; pp. 1190–1197. [CrossRef]eng
dc.relation.references55. Yan, W.; Mestha, L.K.; Abbaszadeh, M. Attack Detection for Securing Cyber Physical Systems. IEEE Internet Things J. 2019, 6, 8471–8481. [CrossRef]eng
dc.relation.references56. Taylor, A.; Leblanc, S.; Japkowicz, N. Anomaly Detection in Automobile Control Network Data with Long Short-Term Memory Networks. In Proceedings of the 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Montreal, QC, Canada, 17–19 October 2016; pp. 130–139. [CrossRef]eng
dc.relation.references57. Goh, J.; Adepu, S.; Junejo, K.; Mathur, A. A Dataset to Support Research in the Design of Secure Water Treatment Systems. In International Conference On Critical Information Infrastructures Security; Springer: Paris, France, 2016.eng
dc.relation.references58. Noura, H.; Theilliol, D.; Ponsart, J.C.; Chamseddine, A. Fault-Tolerant Control Systems: Design and Practical Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009; doi:10.1007/978-1-84882-653-3. [CrossRef]eng
dc.relation.references59. Shalyga, D.; Filonov, P.; Lavrentyev, A. Anomaly Detection for Water Treatment System based on Neural Network with Automatic Architecture Optimization. arXiv 2018, arXiv:1807.07282.eng
dc.relation.references60. Kravchik, M.; Shabtai, A. Detecting Cyber Attacks in Industrial Control Systems Using Convolutional Neural Networks; CPS-SPC ’18; Association for Computing Machinery: New York, NY, USA, 2018; pp. 72–83. [CrossRef]eng
dc.relation.references61. Lin, Q.; Adepu, S.; Verwer, S.; Mathur, A. TABOR: A Graphical Model-Based Approach for Anomaly Detection in Industrial Control Systems. In Proceedings of the 2018 on Asia Conference on Computer and Communications Security, Incheon Republic, Korea, 4 June 2018; pp. 525–536. [CrossRef]eng
dc.relation.references62. Inoue, J.; Yamagata, Y.; Chen, Y.; Poskitt, C.M.; Sun, J. Anomaly Detection for a Water Treatment System Using Unsupervised Machine Learning. In Proceedings of the 2017 IEEE International Conference on Data Mining Workshops (ICDMW), New Orleans, LA, USA, 18–21 November 2017; pp. 1058–1065. [CrossRef]eng
dc.relation.references63. Macas, M.; Wu, C. An Unsupervised Framework for Anomaly Detection in a Water Treatment System. In Proceedings of the 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), Boca Raton, FL, USA, 16–19 December 2019; pp. 1298–1305. [CrossRef]eng
dc.relation.references64. Kravchik, M.; Shabtai, A. Efficient Cyber Attacks Detection in Industrial Control Systems Using Lightweight Neural Networks. arXiv 2019, arXiv:1907.01216.eng
dc.relation.references65. Mousavinejad, E.; Ge, X.; Han, Q.L.; Yang, F.; Vlacic, L. Resilient Tracking Control of Networked Control Systems Under Cyber Attacks. IEEE Trans. Cybern. 2021, 51, 2107–2119. [CrossRef]eng
dc.relation.references66. Bezzaoucha Rebaï, S.; Voos, H.; Darouach, M. Attack-tolerant control and observer-based trajectory tracking for Cyber-Physical Systems. Eur. J. Control 2019, 47, 30–36. [CrossRef]eng
dc.relation.references67. Rebaï, S.B.; Voos, H. Chapter 13—Observer-Based Event-Triggered Attack-Tolerant Control Design for Cyber-Physical Systems. In New Trends in Observer-Based Control; Boubaker, O., Zhu, Q., Mahmoud, M.S., Ragot, J., Karimi, H.R., Dávila, J., Eds.; Emerging Methodologies and Applications in Modelling; Academic Press: Cambridge, MA, USA, 2019; pp. 439–462. [CrossRef]eng
dc.relation.references68. Prajapati, A.K.; Roy, B. Multi-fault Diagnosis in Three Coupled Tank System using Unknown Input Observer. IFAC-PapersOnLine 2016, 49, 47–52. [CrossRef]eng
dc.relation.references69. Zhang, Y.; Wang, Z.; Ma, L.; Alsaadi, F.E. Annulus-event-based fault detection, isolation and estimation for multirate time-varying systems: Applications to a three-tank system. J. Process Control 2019, 75, 48–58. [CrossRef]eng
dc.relation.references70. Ge, H.; Yue, D.; Xie, X.; Deng, S.; Zhang, Y. Analysis of cyber physical systems security via networked attacks. In Proceedings of the 2017 36th Chinese Control Conference (CCC), Dalian, China, 26–28 July 2017; pp. 4266–4272.eng
dc.relation.references71. Jin, X.; Haddad, W. An Adaptive Control Architecture for Leader-Follower Multiagent Systems with Stochastic Disturbances and Sensor and Actuator Attacks. In Proceedings of the 2018 Annual American Control Conference (ACC), Milwaukee, WI, USA, 27–2 June 2018; pp. 980–985.eng
dc.relation.references72. Rebaï, S.; Voos, H.; Darouach, M. A contribution to cyber-security of networked control systems: An event-based control approach. In Proceedings of the 2017 3rd International Conference on Event-Based Control, Communication and Signal Processing (EBCCSP), Funchal, Portugal, 24–26 May 2017; pp. 1–7.eng
dc.relation.references73. Wang, D.; Wang, Z.; Shen, B.; Alsaadi, F.E.; Hayat, T. Recent advances on filtering and control for cyber-physical systems under security and resource constraints. J. Frankl. Inst. 2016, 353, 2451–2466. [CrossRef]eng
dc.relation.references74. Sridhar, S.; Manimaran, G. Data integrity attacks and their impacts on SCADA control system. In Proceedings of the IEEE PES General Meeting, Minneapolis, MN, USA, 30 September 2010; pp. 1–6.eng
dc.relation.references75. Stone, M. Cross-Validatory Choice and Assessment of Statistical Predictions. J. R. Stat. Soc. Ser. B (Methodol.) 1974, 36, 111–147. [CrossRef]eng
dc.relation.references76. Rousseeuw, P.; Leroy, A.Robust Regression & Outlier Detection J. Educ. Stat. 1988, 13, 358–364. [CrossRef]eng
dc.relation.references77. Taormina, R.; Galelli, S.; Tippenhauer, N.O.; Salomons, E.; Ostfeld, A.; Eliades, D.G.; Aghashahi, M.; Sundararajan, R.; Pourahmadi, M.; Banks, M.K.; et al. Battle of the Attack Detection Algorithms: Disclosing Cyber Attacks on Water Distribution Networks. J. Water Resour. Plan. Manag. 2018, 144, 04018048. [CrossRef]eng
dc.relation.references78. BATADAL-Datasets. Available online: (accessed on 15 March 2021).eng
dc.relation.references79. Kamycki, K.; Kapuscinski, T.; Oszust, M. Data Augmentation with Suboptimal Warping for Time-Series Classification. Sensors 2020, 20, 98. [CrossRef]eng
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalAnomaly detectioneng
dc.subject.proposalAnomaly isolationeng
dc.subject.proposalArtificial neural networkseng
dc.subject.proposalCyber Physical Systemeng

Files in this item


This item appears in the following Collection(s)

Show simple item record

Derechos reservados - MDPI, 2021
Except where otherwise noted, this item's license is described as Derechos reservados - MDPI, 2021