Show simple item record

dc.contributor.authorBarrera, Helver Mauricio
dc.contributor.authorFormigoni, Paulo O.
dc.contributor.authorBuiochi, Flávio
dc.contributor.authorFranco Guzmán, Ediguer Enrique
dc.date.accessioned2022-05-12T15:55:10Z
dc.date.available2022-05-12T15:55:10Z
dc.date.issued2021
dc.identifier.issn0041-624Xspa
dc.identifier.urihttps://hdl.handle.net/10614/13864
dc.description.abstractThis work shows a novel ultrasonic viscosity measurement device with increased sensitivity. The measuring principle is based on the determination of the complex reflection coefficient of shear-waves at the solid–liquid interface. But the proposed approach is the replacement of the flat surface at the measurement interface with a grooved surface, which works in a similar way to an optical retroreflector. The complete reflection of the waves involves a double reflection with oblique incidence, where both phenomena increase sensitivity, in comparison with a plane surface. It is shown that a set of orthogonal flat interfaces reflects a well-defined ultrasonic pulse. The sensitivity is enough to measure the change in the magnitude and phase of the reflection coefficient even for the small portion of the energy transmitted to water. A model for calculating the viscosity and a calibration approach for the measurement were proposed. Results with samples of corn syrup–water mixture are reportedeng
dc.format.extent6 páginasspa
dc.format.mimetypeapplication/pdfeng
dc.language.isoengspa
dc.publisherRevista Ultrasonicsspa
dc.rightsDerechos reservados - Elsevier, 2021spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/eng
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S0041624X21001669eng
dc.titleShear-wave corner retroreflector device for ultrasonic measurement of viscosityeng
dc.typeArtículo de revistaspa
dcterms.audienceComunidad universitaria en generalspa
dc.identifier.instnameUniversidad Autónoma de Occidentespa
dc.identifier.reponameRepositorio Educativo Digitalspa
dc.identifier.repourlhttps://red.uao.edu.co/spa
dc.relation.citationendpage6spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume117spa
dc.relation.citesFranco, E. E., Barrera, H.M., Formigoni, P. O., Buiochi, F. (2021). Shear-wave cornerretroreflector device for ultrasonic measurement of viscosity. Ultrasonics. Revista Elsevier. Vol. 117, pp.1-6. https://www.sciencedirect.com/science/article/pii/S0041624X21001669spa
dc.relation.ispartofjournalUltrasonicseng
dc.relation.references[1] W.P. Mason, W.O. Baker, H.J. Mcskimin, J.H. Heiss, Measurement of shear elasticity and viscosity of liquids at ultrasonic frequencies, Phys. Rev. 75 (1949) 936–946, http://dx.doi.org/10.1103/PhysRev.75.936, URL https://link.aps.org/ doi/10.1103/PhysRev.75.936. [2] E.E. Franco, J.C. Adamowski, R.T. Higuti, F. Buiochi, Viscosity measurement of Newtonian liquids using the complex reflection coefficient, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55 (10) (2008) 2247–2253, http://dx.doi.org/10.1109/ TUFFC.923. [3] M.S. Greenwood, J.A. Bamberger, Measurement of viscosity and shear wave velocity of a liquid or slurry for on-line process control, Ultrasonics 39 (9) (2002) 623–630, http://dx.doi.org/10.1016/S0041-624X(02)00372-4, URL http: //www.sciencedirect.com/science/article/pii/S0041624X02003724. [4] E.E. Franco, J.C. Adamowski, F. Buiochi, Ultrasonic viscosity measurement using the shear-wave reflection coefficient with a novel signal processing technique, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 (5) (2010) 1133–1139, http: //dx.doi.org/10.1109/TUFFC.2010.1524. [5] E.E. Franco, F. Buiochi, Ultrasonic measurement of viscosity: Signal processing methodologies, Ultrasonics 91 (2019) 213–219, http://dx.doi.org/10. 1016/j.ultras.2018.08.006, URL http://www.sciencedirect.com/science/article/ pii/S0041624X17308016. [6] I. Alig, D. Lellinger, J. Sulimma, S. Tadjbakhsch, Ultrasonic shear wave reflection method for measurements of the viscoelastic properties of polymer films, Rev. Sci. Instrum. 68 (3) (1997) 1536–1542, http://dx.doi.org/10.1063/1.1147643. [7] P. Longin, C. Verdier, M. Piau, Dynamic shear rheology of high molecular weight polydimethylsiloxanes: comparison of rheometry and ultrasound, J. Non-Newton. Fluid Mech. 76 (1) (1998) 213–232, http://dx.doi.org/ 10.1016/S0377-0257(97)00119-5, URL http://www.sciencedirect.com/science/ article/pii/S0377025797001195. [8] S. Dixon, B. Lanyon, Phase change measurement of ultrasonic shear waves on reflection from a curing epoxy system, J. Phys. D: Appl. Phys. 38 (22) (2005) 4115–4125, http://dx.doi.org/10.1088/0022-3727/38/22/016. [9] K. Mukai, N. Makino, H. Usui, T. Amari, Measurement of rheological properties for smectic-A liquid crystal by using ultrasonic rheometer and rotational viscometer, Prog. Org. Coat. 31 (1) (1997) 179–184, http://dx.doi.org/ 10.1016/S0300-9440(97)00034-9, URL http://www.sciencedirect.com/science/ article/pii/S0300944097000349. [10] V.V. Shah, K. Balasubramaniam, Measuring Newtonian viscosity from the phase of reflected ultrasonic shear wave, Ultrasonics 38 (9) (2000) 921–927, http: //dx.doi.org/10.1016/S0041-624X(00)00033-0, URL http://www.sciencedirect. com/science/article/pii/S0041624X00000330. [11] R. Kazys, A. Voleisis, R. Sliteris, Investigation of the acoustic properties of viscosity standards, Arch. Acoust. 41 (1) (2016) 55–58, http://dx.doi.org/10. 1515/aoa-2016-0005. [12] A. Kulmyrzaev, D.J. McClements, High frequency dynamic shear rheology of honey, J. Food Eng. 45 (4) (2000) 219–224, http://dx.doi.org/ 10.1016/S0260-8774(00)00062-5, URL http://www.sciencedirect.com/science/ article/pii/S0260877400000625. [13] R. Saggin, J.N. Coupland, Rheology of xanthan/sucrose mixtures at ultrasonic frequencies, J. Food Eng. 65 (1) (2004) 49–53, http://dx.doi.org/10.1016/ j.jfoodeng.2003.12.002, URL http://www.sciencedirect.com/science/article/pii/ S0260877403004874. [14] H. Runrun, M. Runyang, W. Chenghui, H. Jing, Ultrasonic shear-wave reflectometry applied to monitor the dynamic viscosity of reheated edible oil, J. Food Process Eng. 43 (6) (2020) e13402, http://dx.doi.org/10.1111/jfpe.13402, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/jfpe.13402, URL https:// onlinelibrary.wiley.com/doi/abs/10.1111/jfpe.13402. [15] Z. Sun, T. Voigt, S.P. Shah, Rheometric and ultrasonic investigations of viscoelastic properties of fresh portland cement pastes, Cem. Concr. Res. 36 (2) (2006) 278–287, http://dx.doi.org/10.1016/j.cemconres.2005.08.007, URL http: //www.sciencedirect.com/science/article/pii/S000888460500195X. [16] X. Wang, K.V. Subramaniam, F. Lin, Ultrasonic measurement of viscoelastic shear modulus development in hydrating cement paste, Ultrasonics 50 (7) (2010) 726–738, http://dx.doi.org/10.1016/j.ultras.2010.02.010, URL http:// www.sciencedirect.com/science/article/pii/S0041624X10000430. [17] O. Manfredi, R. Mills, M. Schirru, R. Dwyer-Joyce, Non-invasive measurement of lubricating oil viscosity using an ultrasonic continuously repeated chirp shear wave, Ultrasonics 94 (2019) 332–339, http://dx.doi.org/10. 1016/j.ultras.2018.08.002, URL http://www.sciencedirect.com/science/article/ pii/S0041624X18302877. [18] F. Buiochi, E.E. Franco, R.T. Higuti, J.C. Adamowski, Viscosity measuring cell using ultrasonic wave mode conversion, Ferroelectrics 333 (1) (2006) 139– 149, http://dx.doi.org/10.1080/00150190600700626, https://doi.org/10.1080/ 00150190600700626. [19] F. Cohen-Tenoudji, W.J. Pardee, B.R. Tittmann, L.A. Ahlberg, R.K. Elsley, A shear wave rheology sensor, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 34 (2) (1987) 263–269, http://dx.doi.org/10.1109/T-UFFC.1987.26941. [20] M.S. Greenwood, J.D. Adamson, L.J. Bond, Measurement of the viscosity-density product using a quartz wedge, AIP Conf. Proc. 760 (1) (2005) 1690–1697, http://dx.doi.org/10.1063/1.1916874, URL https://aip.scitation.org/doi/abs/10. 1063/1.1916874. [21] M. Schirru, X. Li, M. Cadeddu, R. Dwyer-Joyce, Development of a shear ultrasonic spectroscopy technique for the evaluation of viscoelastic fluid properties: Theory and experimental validation, Ultrasonics 94 (2019) 364–375, http://dx. doi.org/10.1016/j.ultras.2018.07.002. [22] M. Schirru, R. Dwyer-Joyce, L. Vergoz, A new ultrasonic rheometer for space exploration in lander missions, Rheol. Acta 58 (1–2) (2019) 47–61, http://dx. doi.org/10.1007/s00397-019-01127-1. [23] Z. Li, D.-Q. Yang, S.-L. Liu, S.-Y. Yu, M.-H. Lu, J. Zhu, S.-T. Zhang, M.-W. Zhu, X.-S. Guo, H.-D. Wu, X.-L. Wang, Y.-F. Chen, Broadband gradient impedance matching using an acoustic metamaterial for ultrasonic transducers, Sci. Rep. 7 (1) (2017) 42863, http://dx.doi.org/10.1038/srep42863. [24] G. Harrison, A.J. Barlow, 3. Dynamic viscosity measurement, in: P.D. Edmonds (Ed.), Ultrasonics, in: Methods in Experimental Physics, vol. 19, Academic Press, 1981, pp. 137–178, http://dx.doi.org/10.1016/S0076-695X(08)60334-8, URL http://www.sciencedirect.com/science/article/pii/S0076695X08603348. [25] H.T. O’neil, Reflection and refraction of plane shear waves in viscoelastic media, Phys. Rev. 75 (1949) 928–935, http://dx.doi.org/10.1103/PhysRev.75.928, URL https://link.aps.org/doi/10.1103/PhysRev.75.928. [26] R. Whorlow, Rheological Techniques, in: Ellis Horwood series in physics and its applications, Ellis Horwood, 1992
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalShear waveseng
dc.subject.proposalViscosityeng
dc.subject.proposalAcoustic retroreflectoreng
dc.subject.proposalReflection coefficienteng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501eng
dc.type.contentTexteng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTeng
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2eng
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85eng
dc.type.versioninfo:eu-repo/semantics/publishedVersioneng


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Derechos reservados - Elsevier, 2021
Except where otherwise noted, this item's license is described as Derechos reservados - Elsevier, 2021