dc.contributor.author | Larrahondo, Diego | |
dc.contributor.author | Moreno-Chuquen, Ricardo | |
dc.contributor.author | Chamorro, Harold R. | |
dc.contributor.author | Gonzalez-Longatt, Francisco | |
dc.date.accessioned | 2022-04-06T18:57:28Z | |
dc.date.available | 2022-04-06T18:57:28Z | |
dc.date.issued | 2021-07 | |
dc.identifier.issn | Energies | eng |
dc.identifier.uri | https://hdl.handle.net/10614/13739 | |
dc.description.abstract | Today, the power system operation represents a challenge given the security and reliability requirements. Mathematical models are used to represent and solve operational and planning issues related with electric systems. Specifically, the AC optimal power flow (ACOPF) and the DC optimal power flow (DCOPF) are tools used for operational and planning purposes. The DCOPF versions correspond to lineal versions of the ACOPF. This is due to the fact that the power flow solution is often hard to obtain with the ACOPF considering all constraints. However, the simplifications use only active power without considering reactive power, voltage values and losses on transmission lines, which are crucial factors for power system operation, potentially leading to inaccurate results. This paper develops a detailed formulation for both DCOPF and ACOPF with multiple generation sources to provide a 24-h dispatching in order to compare the differences between the solutions with different scenarios under high penetration of wind power. The results indicate the DCOPF inaccuracies with respect to the complete solution provided by the ACOPF | eng |
dc.format.extent | 16 páginas | spa |
dc.format.mimetype | application/pdf | eng |
dc.language.iso | eng | eng |
dc.publisher | MDPI | eng |
dc.rights | Derechos Reservados MDPI | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | eng |
dc.title | Comparative performance of multi-period ACOPF and multi-period DCOPF under high integration of wind power | eng |
dc.type | Artículo de revista | spa |
dcterms.audience | Comunidad universitaria en general | spa |
dc.subject.armarc | Energía eólica | spa |
dc.subject.armarc | Recursos energéticos renovables | spa |
dc.subject.armarc | Modelos matemáticos | spa |
dc.subject.armarc | Wind power | eng |
dc.subject.armarc | Renewable energy sources | eng |
dc.subject.armarc | Mathematical models | eng |
dc.identifier.eissn | 19961073 | spa |
dc.relation.citationendpage | 15 | spa |
dc.relation.citationissue | 15 | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | 14 | spa |
dc.relation.cites | Larrahondo, D., Moreno, R., Chamorro, H. R., González Longatt, F. (2021). Comparative Performance of Multi-Period ACOPF and Multi-Period DCOPF under High Integration of Wind Power. Energies. Vol. 14 (15), pp. 1-15. | |
dc.relation.references | Foley, A.; Olabi, A.G. Renewable energy technology developments, trends and policy implications that can underpin the drive for global climate change. Renew. Sustain. Energy Rev. 2017, 68, 1112–1114. | |
dc.relation.references | Hamels, S. CO2 Intensities and Primary Energy Factors in the Future European Electricity System. Energies 2021, 14, 2165 | |
dc.relation.references | Nasirov, S.; Cruz, E.; Agostini, C.A.; Silva, C. Policy Makers’ Perspectives on the Expansion of Renewable Energy Sources in Chile’s Electricity Auctions. Energies 2019, 12, 4149 | |
dc.relation.references | Carrasco, J.M.; Franquelo, L.G.; Bialasiewicz, J.T.; Galván, E.; PortilloGuisado, R.C.; Prats, M.M.; León, J.I.; Moreno-Alfonso, N. Power-electronic systems for the grid integration of renewable energy sources: A survey. IEEE Trans. Ind. Electron. 2006, 53, 1002–1016 | |
dc.relation.references | Moreno, R.; Hoyos, C.; Cantillo, S. A Framework from Peer-to-Peer Electricity Trading Based on Communities Transactions. Int. J. Energy Econ. Policy (IJEEP) 2021, 11, 537–545 | |
dc.relation.references | Shariatmadar, K.; Arrigo, A.; Vallée, F.; Hallez, H.; Vandevelde, L.; Moens, D. Day-Ahead Energy and Reserve Dispatch Problem under Non-Probabilistic Uncertainty. Energies 2021, 14, 1016. | |
dc.relation.references | Capitanescu, F.; Ramos, J.M.; Panciatici, P.; Kirschen, D.; Marcolini, A.M.; Platbrood, L.; Wehenkel, L. State-of-the-art, challenges, and future trends in security constrained optimal power flow. Electr. Power Syst. Res. 2011, 81, 1731–1741 | |
dc.relation.references | Moreno, R. Identification of Topological Vulnerabilities for Power Systems Networks. In Proceedings of the 2018 IEEE Power & Energy Society General Meeting (PESGM), Portland, OR, USA, 5–9 August 2018; doi:10.1109/PESGM.2018.8586143 | |
dc.relation.references | Momoh, J.A. Electric Power System Applications of Optimization; CRC Press: Boca Raton, FL, USA, 2017 | |
dc.relation.references | Zimmerman, R.D.; Murillo-Sánchez, C.E.; Thomas, R.J. MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education. IEEE Trans. Power Syst. 2010, 26, 12–19 | |
dc.relation.references | Kang, S.; Kim, J.; Park, J.W.; Baek, S.M. Reactive power management based on voltage sensitivity analysis of distribution system with high penetration of renewable energies. Energies 2019, 12, 1493 | |
dc.relation.references | Dall’Anese, E.; Baker, K.; Summers, T. Chance-constrained AC optimal power flow for distribution systems with renewables. IEEE Trans. Power Syst. 2017, 32, 3427–3438 | |
dc.relation.references | Ochoa, L.F.; Harrison, G.P. Minimizing energy losses: Optimal accommodation and smart operation of renewable distributed generation. IEEE Trans. Power Syst. 2010, 26, 198–205 | |
dc.relation.references | Bai, W.; Lee, D.; Lee, K.Y. Stochastic dynamic AC optimal power flow based on a multivariate short-term wind power scenario forecasting model. Energies 2017, 10, 2138 | |
dc.relation.references | Montoya, O.D.; Grisales-Noreña, L.; González-Montoya, D.; Ramos-Paja, C.; Garces, A. Linear power flow formulation for low-voltage DC power grids. Electr. Power Syst. Res. 2018, 163, 375–381 | |
dc.relation.references | Jabr, R.A. Adjustable Robust OPF With Renewable Energy Sources. IEEE Trans. Power Syst. 2013, 28, 4742–4751. | |
dc.relation.references | Obando, J.S.; González, G.; Moreno, R. Quantification of operating reserves with high penetration of wind power considering extreme values. Int. J. Electr. Comput. Eng. (IJECE) 2020 | |
dc.relation.references | Soroush, M.; Fuller, J.D. Accuracies of optimal transmission switching heuristics based on DCOPF and ACOPF. IEEE Trans. Power Syst. 2013, 29, 924–932 | |
dc.relation.references | Dunning, I.; Huchette, J.; Lubin, M. JuMP: A modeling language for mathematical optimization. SIAM Rev. 2017, 59, 295–320. | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | eng |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.subject.proposal | Optimal power flow | eng |
dc.subject.proposal | Renewable energy | eng |
dc.subject.proposal | DCOPF | eng |
dc.subject.proposal | ACOPF | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | eng |
dc.type.content | Text | eng |
dc.type.driver | info:eu-repo/semantics/article | eng |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | eng |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | eng |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | eng |
dc.type.version | info:eu-repo/semantics/publishedVersion | eng |