Show simple item record

dc.contributor.authorLarrahondo, Diego
dc.contributor.authorMoreno-Chuquen, Ricardo
dc.contributor.authorChamorro, Harold R.
dc.contributor.authorGonzalez-Longatt, Francisco
dc.date.accessioned2022-04-06T18:57:28Z
dc.date.available2022-04-06T18:57:28Z
dc.date.issued2021-07
dc.identifier.issnEnergieseng
dc.identifier.urihttps://hdl.handle.net/10614/13739
dc.description.abstractToday, the power system operation represents a challenge given the security and reliability requirements. Mathematical models are used to represent and solve operational and planning issues related with electric systems. Specifically, the AC optimal power flow (ACOPF) and the DC optimal power flow (DCOPF) are tools used for operational and planning purposes. The DCOPF versions correspond to lineal versions of the ACOPF. This is due to the fact that the power flow solution is often hard to obtain with the ACOPF considering all constraints. However, the simplifications use only active power without considering reactive power, voltage values and losses on transmission lines, which are crucial factors for power system operation, potentially leading to inaccurate results. This paper develops a detailed formulation for both DCOPF and ACOPF with multiple generation sources to provide a 24-h dispatching in order to compare the differences between the solutions with different scenarios under high penetration of wind power. The results indicate the DCOPF inaccuracies with respect to the complete solution provided by the ACOPFeng
dc.format.extent16 páginasspa
dc.format.mimetypeapplication/pdfeng
dc.language.isoengeng
dc.publisherMDPIeng
dc.rightsDerechos Reservados MDPIspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/eng
dc.titleComparative performance of multi-period ACOPF and multi-period DCOPF under high integration of wind powereng
dc.typeArtículo de revistaspa
dcterms.audienceComunidad universitaria en generalspa
dc.subject.armarcEnergía eólicaspa
dc.subject.armarcRecursos energéticos renovablesspa
dc.subject.armarcModelos matemáticosspa
dc.subject.armarcWind powereng
dc.subject.armarcRenewable energy sourceseng
dc.subject.armarcMathematical modelseng
dc.identifier.eissn19961073spa
dc.relation.citationendpage15spa
dc.relation.citationissue15spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume14spa
dc.relation.citesLarrahondo, D., Moreno, R., Chamorro, H. R., González Longatt, F. (2021). Comparative Performance of Multi-Period ACOPF and Multi-Period DCOPF under High Integration of Wind Power. Energies. Vol. 14 (15), pp. 1-15.
dc.relation.referencesFoley, A.; Olabi, A.G. Renewable energy technology developments, trends and policy implications that can underpin the drive for global climate change. Renew. Sustain. Energy Rev. 2017, 68, 1112–1114.
dc.relation.referencesHamels, S. CO2 Intensities and Primary Energy Factors in the Future European Electricity System. Energies 2021, 14, 2165
dc.relation.referencesNasirov, S.; Cruz, E.; Agostini, C.A.; Silva, C. Policy Makers’ Perspectives on the Expansion of Renewable Energy Sources in Chile’s Electricity Auctions. Energies 2019, 12, 4149
dc.relation.referencesCarrasco, J.M.; Franquelo, L.G.; Bialasiewicz, J.T.; Galván, E.; PortilloGuisado, R.C.; Prats, M.M.; León, J.I.; Moreno-Alfonso, N. Power-electronic systems for the grid integration of renewable energy sources: A survey. IEEE Trans. Ind. Electron. 2006, 53, 1002–1016
dc.relation.referencesMoreno, R.; Hoyos, C.; Cantillo, S. A Framework from Peer-to-Peer Electricity Trading Based on Communities Transactions. Int. J. Energy Econ. Policy (IJEEP) 2021, 11, 537–545
dc.relation.referencesShariatmadar, K.; Arrigo, A.; Vallée, F.; Hallez, H.; Vandevelde, L.; Moens, D. Day-Ahead Energy and Reserve Dispatch Problem under Non-Probabilistic Uncertainty. Energies 2021, 14, 1016.
dc.relation.referencesCapitanescu, F.; Ramos, J.M.; Panciatici, P.; Kirschen, D.; Marcolini, A.M.; Platbrood, L.; Wehenkel, L. State-of-the-art, challenges, and future trends in security constrained optimal power flow. Electr. Power Syst. Res. 2011, 81, 1731–1741
dc.relation.referencesMoreno, R. Identification of Topological Vulnerabilities for Power Systems Networks. In Proceedings of the 2018 IEEE Power & Energy Society General Meeting (PESGM), Portland, OR, USA, 5–9 August 2018; doi:10.1109/PESGM.2018.8586143
dc.relation.referencesMomoh, J.A. Electric Power System Applications of Optimization; CRC Press: Boca Raton, FL, USA, 2017
dc.relation.referencesZimmerman, R.D.; Murillo-Sánchez, C.E.; Thomas, R.J. MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education. IEEE Trans. Power Syst. 2010, 26, 12–19
dc.relation.referencesKang, S.; Kim, J.; Park, J.W.; Baek, S.M. Reactive power management based on voltage sensitivity analysis of distribution system with high penetration of renewable energies. Energies 2019, 12, 1493
dc.relation.referencesDall’Anese, E.; Baker, K.; Summers, T. Chance-constrained AC optimal power flow for distribution systems with renewables. IEEE Trans. Power Syst. 2017, 32, 3427–3438
dc.relation.referencesOchoa, L.F.; Harrison, G.P. Minimizing energy losses: Optimal accommodation and smart operation of renewable distributed generation. IEEE Trans. Power Syst. 2010, 26, 198–205
dc.relation.referencesBai, W.; Lee, D.; Lee, K.Y. Stochastic dynamic AC optimal power flow based on a multivariate short-term wind power scenario forecasting model. Energies 2017, 10, 2138
dc.relation.referencesMontoya, O.D.; Grisales-Noreña, L.; González-Montoya, D.; Ramos-Paja, C.; Garces, A. Linear power flow formulation for low-voltage DC power grids. Electr. Power Syst. Res. 2018, 163, 375–381
dc.relation.referencesJabr, R.A. Adjustable Robust OPF With Renewable Energy Sources. IEEE Trans. Power Syst. 2013, 28, 4742–4751.
dc.relation.referencesObando, J.S.; González, G.; Moreno, R. Quantification of operating reserves with high penetration of wind power considering extreme values. Int. J. Electr. Comput. Eng. (IJECE) 2020
dc.relation.referencesSoroush, M.; Fuller, J.D. Accuracies of optimal transmission switching heuristics based on DCOPF and ACOPF. IEEE Trans. Power Syst. 2013, 29, 924–932
dc.relation.referencesDunning, I.; Huchette, J.; Lubin, M. JuMP: A modeling language for mathematical optimization. SIAM Rev. 2017, 59, 295–320.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalOptimal power floweng
dc.subject.proposalRenewable energyeng
dc.subject.proposalDCOPFeng
dc.subject.proposalACOPFeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501eng
dc.type.contentTexteng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTeng
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2eng
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85eng
dc.type.versioninfo:eu-repo/semantics/publishedVersioneng


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Derechos Reservados MDPI
Except where otherwise noted, this item's license is described as Derechos Reservados MDPI