Show simple item record

dc.contributor.authorFonthal Rico, Farukspa
dc.contributor.authorGarcía Cruz, Jenniferspa
dc.contributor.authorRíos Afanador, Ismael Albertospa
dc.description.abstractIn this paper, we introduce a novel type of transdermal drug delivery device (TD3 ) with a micro-electro-mechanical system (MEMS) design using computer-aided design (CAD) techniques as well as computational fluid dynamics (CFD) simulations regarding the fluid interaction inside the device during the actuation process. For the actuation principles of the chamber and microvalve, both thermopneumatic and piezoelectric principles are employed respectively, originating that the design perfectly integrates those principles through two different components, such as a micropump with integrated microvalves and a microneedle array. The TD3 has shown to be capable of delivering a volumetric flow of 2.92 × 10−5 cm3 /s with a 6.6 Hz membrane stroke frequency. The device only needs 116 Pa to complete the suction process and 2560 Pa to complete the discharge process. A 38-microneedle array with 450 µm in length fulfills the function of permeating skin, allowing that the fluid reaches the desired destination and avoiding any possible pain during the insertioneng
dc.format.extent11 páginasspa
dc.rightsDerechos reservados - MDPI, 2019spa
dc.titleDesign and analyses of a transdermal drug delivery device (TD3 )eng
dc.typeArtículo de revistaspa
dc.subject.armarcSistemas microelectromecánicosspa
dc.subject.armarcDispositivos electromecánicosspa
dc.subject.armarcSistemas microelectromecánicosspa
dc.subject.armarcMicroelectromechanical systemseng
dc.subject.armarcElectromechanical deviceseng
dc.publisher.placeBasel, Switzerlandeng
dc.relation.citationeditionVolumen 19, número 23 (2019)spa
dc.relation.citationissueNúmero 23spa
dc.relation.citationvolumeVolumen 19spa
dc.relation.citesGarcía, J., Ríos, I., Fonthal Rico F. (2019). Design and analyses of a transdermal drug delivery device (TD3). Sensors. (Vol. 19 (23), pp. 1-11.
dc.relation.references1. Hood, R.R.; Kendall, E.L.; DeVoe, D.L.; Quezado, Z.; Junqueira, M.J.; Finkel, C.; Vreeland, W.N. Microfluidic formation of nanoscale liposomes for passive transdermal drug delivery. In Proceedings of the Microsystems for Measurement and Instrumentation (MAMNA), Gaithersburg, MD, USA, 14 May 2013; pp. 12–15.
dc.relation.references2. Dolz˙an, T.; Vrtacˇnik, D.; Resnik, D.; Aljancˇicˇ, U.; Moz˙ ek, M.; Pecˇar, B.; Amon, S. Design of transdermal drug delivery system with PZT actuated micropump. In Proceedings of the 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 26–30 May 2014; pp. 96–99.
dc.relation.references3. Lee, H.; Song, C.; Baik, S.; Kim, D.; Hyeon, T.; Kim, D.H. Device-assisted transdermal drug delivery. Adv. Drug Deliv. Rev. 2018, 127, 35–45. [CrossRef] [PubMed]
dc.relation.references4. Mousoulis, C.; Ochoa, M.; Papageorgiou, D.; Ziaie, B. A Skin-Contact-Actuated Micropump for Transdermal Drug Delivery. IEEE Trans. Biomed. Eng. 2011, 58, 1492–1498. [CrossRef] [PubMed]
dc.relation.references5. Camovic´, M.; Bišcˇevic´, A.; Brcˇic´, I.; Borcˇak, K.; Bušatlic´, S.; C´ enanovic´, N.; Mulalic´, A.; Osmanlic´, M.; Sirbubalo, M.; Tucak, A.; et al. Coated 3d printed PLA microneedles as transdermal drug delivery systems. IFMBE Proc. 2020, 73, 735–742. [CrossRef]
dc.relation.references6. Wang, W.; Soper, S.A. Bio-MEMS Technologies and Applications, 1st ed.; CRC Press: Boca Raton, NY, USA, 2006; pp. 7–237. ISBN 9780849335327.
dc.relation.references7. Ashraf, M.W.; Tayyaba, S.; Afzulpurkr, N. Tapered tip hollow silicon microneedles for transdermal drug delivery. In Proceedings of the 2nd International Conference on Mechanical and Electronics Engineering (ICMEE), Kyoto, Japan, 1–3 August 2010.
dc.relation.references8. Jurcicek, P.; Zou, H.; Zhang, S.; Liu, C. Design and fabrication of hollow out-of-plane silicon microneedles. IET Micro Nano Lett. 2013, 8, 78–81. [CrossRef]
dc.relation.references9. Varadan, V.K.; Vinoy, K.J.; Gopalakrishnan, S. Smart Material Systems and MEMS: Design and Development Methodologies, 1st ed.; JohnWiley & Sons: Chichester, UK, 2006; ISBN 9780470093610.
dc.relation.references10. Cong, W.; Jin-seong, K.; Jungyul, P. Micro check valve integrated magnetically actuated micropump for implantable drug delivery. In Proceedings of the 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 18–22 June 2017; pp. 1711–1713.
dc.relation.references11. Shoji, E. Fabrication of a diaphragm micropump system utilizing the ionomer-based polymer actuator. Sens. Actuators B Chem. 2016, 237, 660–665. [CrossRef]
dc.relation.references12. Garcia, J.; Rios, I.; Fonthal, F. Structural and microfluidic analysis of microneedle array for drug delivery. In Proceedings of the 31st Symposium on Microelectronics Technology and Devices IEEE SBMicro 2016, Belo Horizonte, Brazil, 29 August–3 September 2016; pp. 1–4.
dc.relation.references13. Kawun, P.; Leahy, S.; Lai, Y. A thin PDMS nozzle/di user micropump for biomedical applications. Sens. Actuators B Chem. 2016, 249, 149–154. [CrossRef]
dc.relation.references14. Singh, S.; Kumar, N.; George, D.; Sen, A.K. Analytical modeling, simulations and experimental studies of a PZT actuated planar valveless PDMS micropump. Sens. Actuators B Chem. 2015, 225, 81–94. [CrossRef]
dc.relation.references15. Nguyen, N.T.; Mousavi, S.A.; Kashaninejad, N.; Phan, D.T. Design, fabrication and characterization of drug delivery systems based on lab-on-a-chip technology. Adv. Drug Deliv. Rev. 2013, 65, 1403–1419. [CrossRef] [PubMed]
dc.relation.references16. Davis, S.P.; Martanto,W.; Allen, M.G.; Prausnitz, M.R. Hollow metal microneedles for insulin delivery to diabetic rats. IEEE Trans. Biomed. Eng. 2005, 52, 909–915. [CrossRef] [PubMed]
dc.relation.references17. Roxhed, N.T.; Gasser, C.; Griss, P.; Holzapfel, G.A.; Stemme, G. Penetration-enhanced ultrasharp microneedles and prediction on skin interaction for e cient transdermal drug delivery. J. Microelectromech. Syst. 2007, 16, 1429–1440. [CrossRef]
dc.relation.references18. Sanjay, S.T.; Zhou,W.; Dou, M.; Tavakoli, H.; Ma, L.; Xu, F.; Li, X. Recent advances of controlled drug delivery using microfluidic platforms. Adv. Drug Deliv. Rev. 2018, 128, 3–28. [CrossRef] [PubMed]
dc.relation.references19. Bao, S.J.; Xie, D.L.; Zhang, J.P.; Chang, W.R.; Liang, D.C. Crystal structure of desheptapeptide (B24–B30) insulin at 1.6 Å resolution: Implications for receptor binding. Proc. Natl. Acad. Sci. USA 1997, 94, 2975–2980. [CrossRef] [PubMed]
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalTransdermal drug deliveryeng
dc.subject.proposalMicro-electro-mechanical systems (MEMS)eng
dc.subject.proposalFinite element analysieng
dc.subject.proposalComputational fluid dynamiceng

Files in this item


This item appears in the following Collection(s)

Show simple item record

Derechos reservados - MDPI, 2019
Except where otherwise noted, this item's license is described as Derechos reservados - MDPI, 2019