Show simple item record

dc.contributor.authorSepulveda Salcedo, Lilian Sofiaspa
dc.contributor.authorVasilieva, Olgaspa
dc.contributor.authorSvinin, Mikhailspa
dc.date.accessioned2021-09-30T21:04:08Z
dc.date.available2021-09-30T21:04:08Z
dc.date.issued2020-02
dc.identifier.issn14679590
dc.identifier.urihttps://hdl.handle.net/10614/13298
dc.description.abstractIn this paper, we reflect upon control intervention practices habitually exerted by healthcare authorities in tropical areas that suffer from incidental outbreaks of dengue fever, in particular, the city of Cali, Colombia. Such control interventions, principally based on the insecticide spraying, are carried out sporadically in order to overcome an ongoing epidemic or at least to reduce its size. It is worth pointing out that control actions of this type do not usually account for sufficient budget because epidemic outbreaks are difficult to predict. In practical terms, these occasional control interventions are performed by spraying, as quickly as possible, all existing stock of insecticide (regardless of its lethality) and employing all available manpower. The goal of this paper is to design better strategies for insecticide-based control actions, which are capable of preventing more human infections at no additional cost, and to reveal the obsolescence of current vector eradication practices. Our approach relies on dynamic optimization, where the number of averted human infections is maximized under budget constraint and subject to a simple dengue transmission model amended with one control variable that stands for the insecticide spraying. As a result, we obtain structurally robust control intervention policies that demonstrate better performance and higher resilience to possible budget limitations than traditional modus operandieng
dc.format.extent28 páginasspa
dc.format.mimetypeapplication/pdfeng
dc.language.isoengeng
dc.publisherWileyeng
dc.rightsDerechos reservados - Wiley, 2020spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/eng
dc.sourcehttps://onlinelibrary.wiley.com/doi/full/10.1111/sapm.12295eng
dc.titleOptimal control of dengue epidemic outbreaks under limited resourceseng
dc.typeArtículo de revistaspa
dcterms.audienceGeneralspa
dc.subject.armarcControl vectorialspa
dc.subject.armarcVector controleng
dc.contributor.corporatenameStudies in Applied Mathematicseng
dc.relation.citationeditionVolumen 144, número 2 (2020)spa
dc.relation.citationendpage212spa
dc.relation.citationissueNúmero 2spa
dc.relation.citationstartpage185spa
dc.relation.citationvolumeVolumen 144spa
dc.relation.citesSepulveda Salcedo, L.S., Vasilieva, O., Svinin M. (2020). Optimal control of dengue epidemic outbreaks under limited resources. Studies in Applied Mathematics. (Vol. 144 (2), pp. 185-212. https://doi.org/10.1111/sapm.12295eng
dc.relation.ispartofjournalStudies in Applied Mathematicseng
dc.relation.referencesJansen CC, Beebe NW. The dengue vector Aedes aegypti: what comes next. Microb Infect. 2010; 12(4): 272- 279.eng
dc.relation.referencesBen-Shachar R, Koelle K. Transmission-clearance trade-offs indicate that dengue virulence evolution depends on epidemiological context. Nat Commun. 2018;9(1):2355eng
dc.relation.referencesCapeding MR, Tran NH, Hadinegoro SR, et al. Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia: a phase 3, randomised, observer-masked, placebo-controlled trial. Lancet. 2014;384(9951):1358-1365eng
dc.relation.references. Escobar-Morales G, ed. Cali en cifras 2015 [Cali in numbers 2015]. Alcaldía de Santiago de Cali: Departamento Administrativo de Planeación; 2016.eng
dc.relation.referencesMendez F, Barreto M, Arias J, et al. Human and mosquito infections by dengue viruses during and after epidemics in a dengue-endemic region of Colombia. Am J Trop Med Hyg. 2006; 74(4): 678- 683eng
dc.relation.referencesOcampo CB, Wesson DM. Population dynamics of Aedes aegypti from a dengue hyperendemic urban setting in Colombia. Am J Trop Med Hyg. 2004; 71(4): 506- 513.eng
dc.relation.referencesOcazionez RE, Cortés FM, Villar LA, Gómez SY. Temporal distribution of dengue virus serotypes in Colombian endemic area and dengue incidence: re-introduction of dengue-3 associated to mild febrile illness and primary infection. Mem Inst Oswaldo Cruz. 2006; 101(7): 725- 731eng
dc.relation.referencesBortman M. Elaboración de corredores o canales endémicos mediante planillas de cálculo [Establishing endemic corridors or ranges with computer spreadsheets]. Pan Am J Public Health. 1999; 5: 1- 8eng
dc.relation.referencesSmith DL, Battle KE, Hay SI, Barker CM, Scott TW, McKenzie FE. Ross, Macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens. PLoS Pathog. 2012; 8(4):e1002588eng
dc.relation.referencesAron JL, May RM. The population dynamics of malaria. In: RM Anderson, ed. Population Dynamics and Infectious Disease: Theory and Applications. London: Chapman and Hall; 1982: 139- 179.eng
dc.relation.referencesSepulveda LS, Vasilieva O. Optimal control approach to dengue reduction and prevention in Cali, Colombia. Math Methods Appl Sci. 2016; 39(18): 5475- 5496.eng
dc.relation.referencesVillar LA, Rojas DP, Besada-Lombana S, Sarti E. Epidemiological trends of dengue disease in Colombia (2000-2011): a systematic review. PLoS Neglect Trop Dis. 2015; 9(3):e0003499eng
dc.relation.referencesOkosun KO, Rachid O, Marcus N. Optimal control strategies and cost-effectiveness analysis of a malaria model. Biosystems. 2013; 111(2): 83- 101eng
dc.relation.referencesMoulay D, Aziz-Alaoui MA, Kwon HD. Optimal control of chikungunya disease: larvae reduction, treatment and prevention. Math Biosci Eng. 2012; 9(2): 369- 392eng
dc.relation.referencesLenhart S, Workman JT. Optimal Control Applied to Biological Models. Boca Raton, FL: Chapman & Hall/CRC; 2007.eng
dc.relation.referencesFleming W, Rishel R. Deterministic and Stochastic Optimal Control. New York, NY: Springer; 1975eng
dc.relation.referencesSeierstad A, Sydsaeter K. Optimal Control Theory with Economic Applications. Vol. 24 of Advanced Textbooks in Economics. Amsterdam: Elsevier North-Holland, Inc.; 2002eng
dc.relation.referencesRao AV, Benson DA, Darby C, et al. Algorithm 902: GPOPS, a MATLAB software for solving multiple-phase optimal control problems using the Gauss pseudospectral method. ACM Trans Math Softw. 2010; 37(2): 22eng
dc.relation.referencesArias JH, Martínez HJ, Sepúlveda LS, Vasilieva O. Estimación de los parámetros de dos modelos para la dinámica del dengue y su vector en Cali, Colombia [Parameter estimation of two mathematical models for the dynamics of dengue and its vector in Cali, Colombia]. Ingeniería y Ciencia. 2018; 14(28): 69- 92eng
dc.relation.referencesYang HM, Macoris MLG, Galvani KC, Andrighetti MTM, Wanderley DMV. Assessing the effects of temperature on dengue transmission. Epidemiol Infect. 2009; 137(8): 1179- 1187.eng
dc.relation.referencesBarrios E, Lee S, Vasilieva O. Assessing the effects of daily commuting in two-patch dengue dynamics: a case study of Cali, Colombia. J Theor Biol. 2018; 453: 14- 39eng
dc.relation.referencesLasluisa D, Barrios E, Vasilieva O. Optimal strategies for dengue prevention and control during daily commuting between two residential areas. Processes. 2019; 7(4): 197eng
dc.relation.referencesSepúlveda-Salcedo LS, Vasilieva O, Martínez-Romero HJ, Arias-Castro JH. Ross-Macdonald: Un modelo para la dinámica del dengue en Cali, Colombia [Ross-Macdonald: a model for the dengue dynamic in Cali, Colombia]. Rev Salud Pública. 2015; 17(5): 749- 761eng
dc.relation.referencesBello S, Díaz E, Rojas J, Romero M, Salazar V. Medición del impacto económico del dengue en Colombia: una aproximación a los costos médicos directos en el periodo 2000-2010 [Measuring the economic impact of dengue in Colombia: an approximation to the direct medical costs in 2000-2010]. Biomédica. 2011; 31(Suppl. 3): 3- 315eng
dc.relation.referencesuaya JA, Shepard DS, Siqueira JB, et al. Cost of dengue cases in eight countries in the Americas and Asia: a prospective study. Am J Trop Med Hyg. 2009; 80(5): 846- 855eng
dc.relation.referencesAyala-García J. La salud en Colombia: más cobertura pero menos acceso [Health-care in Colombia: More Coverage but Less Access]. Banco de la Republica de Colombia; 2014. No. 204eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalDengue outbreakseng
dc.subject.proposalInsecticide based vector controleng
dc.subject.proposalIsoperimetric constrainteng
dc.subject.proposalOptimal controleng
dc.subject.proposalOptimizationeng
dc.subject.proposalRoss-Macdonald modeleng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501eng
dc.type.contentTexteng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTeng
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2eng
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85eng
dc.type.versioninfo:eu-repo/semantics/publishedVersioneng


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Derechos reservados - Wiley, 2020
Except where otherwise noted, this item's license is described as Derechos reservados - Wiley, 2020