Show simple item record

dc.contributor.authorSommerfeld, Martinspa
dc.contributor.authorLain, Santiagospa
dc.description.abstractThe numerical computation of spraying systems is favourably conducted by applying the Euler/Lagrange approach. Although sprays downstream of the breakup region are very often rather dilute, droplet collisions may still have a significant influence on the spray evolution and especially the produced droplet size spectrum. Consequently, they have to be reliably modelled in the Lagrangian tracking approach. For this purpose, the fully stochastic droplet collision model is applied, which is numerically very efficient. It is demonstrated that this model is largely independent of the considered flow mesh and hence grid size, as well as the number of tracked parcels and the Lagrangian time step size. Moreover, this model includes the impact efficiency which may remarkably reduce collision rates for a wide droplet size spectrum. An essential ingredient of any droplet collision model is the proper description of the collision outcome through the so-called collision maps (i.e. the non-dimensional impact parameter plotted versus collision Weber number; B = f(We)), where the outcome regions (i.e. bouncing, coalescence and stretching or reflexive separation) are demarked by appropriate, mostly theory-based boundary lines. There are a number of different correlations available which may be applied for this purpose. The structure of the collision maps strongly depends on the kind of liquid being atomised. Different types of boundary lines and collision map structures are analysed here in detail with regard to the conditional collision rates or numbers within a rather simple hollow cone spray. The comparison of the averaged Sauter mean diameters along the spray demonstrates the importance of droplet collisions and how strongly this result is affected by the presumed droplet collision maps. Crude approximations to such collision maps may result in large errors and wrong predictions of the produced droplet size spectrum. Moreover, it is demonstrated that the effective PDF (probability density function) of the colliding droplet size ratio has typically a maximum in the range 0.1 < Δ < 0.3, a condition where no experimental data are available so far and some of the commonly used boundary lines are not suitable. Naturally, the spray simulations are compared to experimental data for a water hollow-cone spray, showing excellent agreement if the droplet collision map is selected properly. This concerns profiles of both gas and droplet velocities as well as droplet concentration development and local droplet size distributions. Expectedly, the prediction of the velocities is less sensitive with respect to the presumed droplet collision mapeng
dc.format.extent61 páginasspa
dc.rightsDerechos reservados - Revista International Journal of Multiphase Flow, 2020spa
dc.titleInfluence of droplet collision modelling in Euler/Lagrange calculations of spray evolutioneng
dc.typeArtículo de revistaspa
dc.contributor.corporatenameInternational Journal of Multiphase Flowspa
dc.relation.citationeditionVolumen 132 (2020)spa
dc.relation.citationvolumeVolumen 132spa
dc.relation.citesLain S., Sommerfeld M. (2020). Influence of droplet collision modelling in Euler/Lagrange calculations of spray evolution. International Journal of Multiphase Flow. (Vol. 132), pp.1-63.
dc.relation.ispartofjournalInternational Journal of Multiphase Floweng
dc.relation.referencesAmsden et al., 1989 Amsden, A.A., O`Rourke, P.J. and Butler, T.D.: KIVA-II: A computer program for chemically reactive flows with sprays. Los Alamos Scientific Laboratory Report, LA-11560-MS (1989)spa
dc.relation.referencesAshgriz and Poo, 1990 N. Ashgriz, J.Y. Poo Coalescence and separation in binary collisions of liquid drops J Fluid Mech, 221 (1990), pp. 183-204spa
dc.relation.referencesBauman, 2001 S.D. Bauman A spray model for an adaptive mesh refinement code Ph.D. Thesis University of Wisconsin-Madison (2001)spa
dc.relation.referencesBrazier-Smith et al., 1972 P.R. Brazier-Smith, S.G. Jennings, J. Latham The interaction of falling water drops: coalescence Proc. R. Soc. Lond. A, 326 (1972), pp. 393-408spa
dc.relation.referencesCrowe et al., 1977 C.T. Crowe, M.P. Sharma, D.E. Stock The Particle-source-in-cell (PSI-cell) model for gas-droplet flows J. of Fluids Eng. Vol., 99 (1977), pp. 325-332spa
dc.relation.referencesDukowicz, 1980 J.K. Dukowicz A particle-fluid numerical model for liquid sprays J. of Computational Physics, 35 (1980), pp. 229-253spa
dc.relation.referencesEstrade et al., 1999 J.-.P. Estrade, H. Carentz, G. Lavergne, Y. Biscos Experimental investigation of dynamic binary collision of ethanol droplets - a model for droplet coalescence and bouncing International Journal of Heat and Fluid Flow, 20 (1999), pp. 486-491spa
dc.relation.referencesFoissac et al., 2010 A. Foissac, J. Malet, S. Mimouni, F. Feuillebois Binary water droplet collision study in presence of solid aerosols in air Proceedings 7th International Conference on Multiphase Flow, ICMF2010, Tampa, FL USA, may 30.–June 4 (2010)spa
dc.relation.referencesGavaises et al., 1996 T.L. Gavaises, A. Theodorakakos, G. Bergerles, G. Brenn Evaluation of the effect of droplet collisions on spray mixing Proc. Inst. Mechanical Engineers, 210 (1996), p. 465 –465spa
dc.relation.referencesGuo et al., 2004 B. Guo, D.F. Fletcher, T.A.G. Langrish Simulation of the agglomeration in a spray using Lagrangian particle tracking Appl Math Model, 28 (2004), pp. 273-290spa
dc.relation.referencesHo and Sommerfeld, 2002 C.A. Ho, M. Sommerfeld Modelling of micro-particle agglomeration in turbulent flow Chem. Eng. Sci., 57 (2002), pp. 3073-3084spa
dc.relation.referencesJiang et al., 1992 Y.J. Jiang, A. Umemura, C.K. Law An experimental investigation on the collision behavior of hydrocarbon droplets J Fluid Mech, 234 (1992), pp. 171-190spa
dc.relation.referencesKo and Ryou, 2005 G.H. Ko, H.S. Ryou Modeling of droplet collision-induced breakup process Int. J. Multiphase Flow, 31 (2005), pp. 723-738spa
dc.relation.referencesKollar et al., 2005 L. Kollar, M. Farzaneh, A.R. Karev Modeling droplet collisions and coalescence in an icing wind tunnel and the influence of these processes on droplet size distribution Int. J. Multiphase Flow, 31 (2005), pp. 69-92spa
dc.relation.referencesKohnen and Sommerfeld, 1997 G. Kohnen, M. Sommerfeld The effect of turbulence modelling on turbulence modification in two-phase flows using the Euler–Lagrange approach Proc. 11th Symp. on Turbulent Shear Flows, Grenoble (France), 2 (1997), pp. 23-28 P3spa
dc.relation.referencesLaín et al., 2002 S. Laín, M. Sommerfeld, J. Kussin Experimental studies and modelling of four-way coupling in particle-laden horizontal channel flow Int. J. Heat and Fluid Flow, 23 (2002), pp. 647-656spa
dc.relation.referencesLain, 2010 S. Lain On Modelling and Numerical Computation of Industrial Dispersed Two-Phase Flow With the Euler-Lagrange approach Habilitation Martin-Luther-University Halle-Wittenberg, Shaker Verlag, Aachen (2010)spa
dc.relation.referencesLain and Sommerfeld, 2013 S. Lain, M. Sommerfeld Characterisation of pneumatic conveying systems using the Euler/Lagrange approach Powder Technol, 235 (2013), pp. 764-782spa
dc.relation.referencesMunnannur and Reitz, 2007 A. Munnannur, R.D. Reitz A new predictive model for fragmenting and non-fragmenting binary droplet collisions Int. J. Multiphase Flow, 33 (2007), pp. 873-896spa
dc.relation.referencesNijdam et al., 2006 J.J. Nijdam, B. Guo, D.F. Fletcher, T.A.G. Langrish Lagrangian and Eulerian models for simulating turbulent dispersion and coalescence of droplets within a spray Appl Math Model, 30 (2006), pp. 1196-1211spa
dc.relation.referencesO´Rourke, 1981 P.J. O´Rourke Collective Drop Effects On Vaporizing Liquid Sprays Los Alamos National Laboratory, New Mexico (1981) Dissertationspa
dc.relation.referencesPerini and Reitz, 2016 F. Perini, R.D. Reitz Improved atomization, collision and sub-grid scale momentum coupling models for transient vaporizing engine sprays Int. J. Multiphase Flow, 79 (2016), pp. 107-123spa
dc.relation.referencesPlatzer and Sommerfeld, 2006 E. Platzer, M. Sommerfeld Modeling of turbulent atomization combining a two-fluid and a structure function approach Atomization and Sprays, 16 (2006), pp. 103-126spa
dc.relation.referencesQian and Law, 1997 J. Qian, C.K. Law Regimes of coalescence and separation in droplet collision J Fluid Mech, 331 (1997), pp. 59-80spa
dc.relation.referencesRüger et al., 2000 M. Rüger, S. Hohmann, M. Sommerfeld, G. Kohnen Euler/Lagrange calculations of turbulent sprays: the effect of droplet collisions and coalescence Atomization and Sprays, 10 (2000), pp. 47-81spa
dc.relation.referencesSommerfeld and Zivkovic, 1992 M. Sommerfeld, G. Zivkovic (invited lecture): recent advances in the numerical simulation of pneumatic conveying through pipe systems Ch. Hirsch, J. Periaux, E. Onate (Eds.), Computational Methods in Applied Science, Elsevier, BrusselsAmsterdam (1992), pp. 201-212 Invited Lectures and Special Technological Sessions of the First European Computational Fluid Dynamics Conference and the First European Conference on Numerical Methods in Engineeringspa
dc.relation.referencesSommerfeld and Tropea, 1999 M. Sommerfeld, C. Tropea Chapter 7: Single-Point Laser Measurement S.L. Soo (Ed.), Instrumentation for Fluid-Particle Flow, Noyes Publications (1999), pp. 252-317spa
dc.relation.referencesSommerfeld et al., 2008 Sommerfeld, M., van Wachem, B. and Oliemans, R.: Best Practice Guidelines for Computational Fluid Dynamics of Dispersed Multiphase Flows. ERCOFTAC, ISBN 978-91-633-3564-8 (2008).spa
dc.relation.referencesSommerfeld, 2017a M. Sommerfeld Numerical methods for dispersed multiphase flows T. Bodnár, G.P. Galdi, Š. Necčasová (Eds.), Particles in Flows, Springer International Publishing (2017), pp. 327-396 Series Advances in Mathematical Fluid Mechanicsspa
dc.relation.referencesSommerfeld and Lain, 2017 M. Sommerfeld, S. Lain Numerical analysis of sprays with an advanced collision model ILASS–Europe 2017, 28th Conference on Liquid Atomization and Spray Systems, 6 – 8 September 2017, Valencia, Spain (2017), pp. 418-431spa
dc.relation.referencesSquires and Eaton, 1993 K.D. Squires, J.K. Eaton On the modeling of particle-laden turbulent flows 6th Workshop on Two-Phase Flow Predictions, Proceedings, Ed. by M. Sommerfeld, Bilateral Seminars of the International Bureau, Vol. 14, Forschungszentrum Jülich GmbH (1993), pp. 220-229spa
dc.relation.referencesTennison et al., 1998 Tennison, P.J., Georjon, T.L., Farrell, P.V. and Reitz, R.D.: An experimental and numerical study of sprays from a common rail injection system for use in an HSDI Diesel engine. SAE Technical Paper 980810 (1998).spa
dc.relation.referencesWoo, 2016 M.W. Woo Computational Fluid Dynamics Simulation of Spray Dryers: An Engineer's Guide CRC Press, Boca Raton (2016)spa
dc.relation.referencesZhang et al., 2016 Z. Zhang, Y. Chi, L. Shang, P. Zhang, Z. Zhao On the role of droplet bouncing in modeling impinging sprays under elevated pressures Int. J. Heat and Mass Transfer, 102 (2016), pp. 657-668spa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalEuler/lagrange computationseng
dc.subject.proposalHollow-cone sprayeng
dc.subject.proposalBinary droplet collisionseng
dc.subject.proposalModelling collision outcomeseng
dc.subject.proposalCollision mapseng

Files in this item


This item appears in the following Collection(s)

Show simple item record

Derechos reservados - Revista International Journal of Multiphase Flow, 2020
Except where otherwise noted, this item's license is described as Derechos reservados - Revista International Journal of Multiphase Flow, 2020