Show simple item record

dc.contributor.authorGálvez, Jaime
dc.contributor.authorVera Mondragón, Bairo
dc.contributor.authorWagner, Elizabeth
dc.contributor.authorCorrea Aguirre, Juan Pablo
dc.contributor.authorHidalgo Salazar, Miguel Angel
dc.contributor.authorCaicedo, Carolina
dc.date.accessioned2021-09-30T13:37:55Z
dc.date.available2021-09-30T13:37:55Z
dc.date.issued2020-09-16
dc.identifier.issn20734360
dc.identifier.urihttps://hdl.handle.net/10614/13292
dc.description.abstractOne of the critical processing parameters—the speed of the extrusion process for plasticized poly (lactic acid) (PLA)—was investigated in the presence of acetyl tributyl citrate (ATBC) as plasticizer. The mixtures were obtained by varying the content of plasticizer (ATBC, 10–30% by weight), using a twin screw extruder as a processing medium for which a temperature profile with peak was established that ended at 160 °C, two mixing zones and different screw rotation speeds (60 and 150 rpm). To evaluate the thermo-mechanical properties of the blend and hydrophilicity, the miscibility of the plasticizing and PLA matrix, Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), oscillatory rheological analysis, Dynamic Mechanical Analysis (DMA), mechanical analysis, as well as the contact angle were tested. The results derived from the oscillatory rheological analysis had a viscous behavior in the PLA samples with the presence of ATBC; the lower process speed promotes the transitions from viscous to elastic as well as higher values of loss modulus, storage modulus and complex viscosity, which means less loss of molecular weight and lower residual energy in the transition from the viscous state to the elastic state. The mechanical and thermal performance was optimized considering a greater capacity in the energy absorption and integration of the components.eng
dc.format.extent21 páginasspa
dc.format.mimetypeapplication/pdfeng
dc.language.isoengeng
dc.publisherMultidisciplinary Digital Publishing Institute. MDPIeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/eng
dc.subjectCitrato de acetil tributilospa
dc.titleEffect of extrusion screw speed and plasticizer proportions on the rheological, thermal, mechanical, morphological and superficial properties of PLAeng
dc.typeArtículo de revistaspa
dcterms.audienceGeneralspa
dc.subject.armarcBiopolímerosspa
dc.subject.armarcDinámica de fluidosspa
dc.subject.armarcÁngulo de contactospa
dc.subject.armarcFluid dynamicseng
dc.relation.citationeditionVolumen 12, número 9 (2020)spa
dc.relation.citationendpage21spa
dc.relation.citationissueNúmero 9spa
dc.relation.citationstartpage1spa
dc.relation.citationvolumeVolumen 12spa
dc.relation.citesGálvez, J., Correa Aguirre, J. P., Hidalgo Salazar, M.A., Vera Mondragón, B., Wagner, E., Caicedo C. (2020). Effect of extrusion screw speed and plasticizer proportions on the rheological, thermal, mechanical, morphological and superficial properties of PLA. Polymers. (Vol. 12 (9), pp.1-21. https://doi.org/10.3390/polym12092111eng
dc.relation.ispartofjournalPolymerseng
dc.relation.referencesArrieta, M.P.; Peponi, L.; López, D.; Fernandez-García, M. Recovery of yerba mate (Ilex paraguariensis) residue for the development of PLA-based bionanocomposite films. Ind. Crop. Prod. 2018, 111, 317–328.spa
dc.relation.referencesAliotta, L.; Gigante, V.; Coltelli, M.-B.; Cinelli, P.; Lazzeri, A.; Seggiani, M. Thermo-mechanical properties of PLA/short flax fiber biocomposites. Appl. Sci. 2019, 9, 3797.spa
dc.relation.referencesCorrea, J.P.; Bacigalupe, A.; Maggi, J.; Eisenberg, P. Biodegradable PLA/PBAT/clay nanocomposites: Morphological, rheological and thermomechanical behavior. J. Renew. Mater. 2016, 4, 258–265.spa
dc.relation.referencesCorrea, J.P.; Molina, V.; Sanchez, M.; Kainz, C.; Eisenberg, P.; Massani, M.B. Improving ham shelf life with a polyhydroxybutyrate/polycaprolactone biodegradable film activated with nisin. Food Packag. Shelf Life 2017, 11, 31–39.spa
dc.relation.referencesSignori, F.; Coltelli, M.-B.; Bronco, S. Thermal degradation of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and their blends upon melt processing. Polym. Degrad. Stab. 2009, 94, 74–82.spa
dc.relation.referencesArrieta, M.P.; López, J.; López, D.; Kenny, J.M.; Peponi, L. Development of flexible materials based on plasticized electrospun PLA-PHB blends: Structural, thermal, mechanical and disintegration properties. Eur. Polym. J. 2015, 73, 433–446.spa
dc.relation.referencesMysiukiewicz, O.; Barczewski, M.; Skórczewska, K.; Matykiewicz, D. Correlation between Processing Parameters and Degradation of Di erent Polylactide Grades during Twin-Screw Extrusion. Polymers 2020, 12, 1333.spa
dc.relation.referencesChoi, K.-M.; Choi, M.-C.; Han, D.-H.; Park, T.-S.; Ha, C.-S. Plasticization of poly(lactic acid) (PLA) through chemical grafting of poly(ethylene glycol) (PEG) via in situ reactive blending. Eur. Polym. J. 2013, 49, 2356–2364.spa
dc.relation.referencesMurariu, M.; Ferreira, A.D.S.; Alexandre, M.; Dubois, P. Polylactide (PLA) designed with desired end-use properties: 1. PLA compositions with low molecular weight ester-like plasticizers and related performances. Polym. Adv. Technol. 2008, 19, 636–646.spa
dc.relation.referencesGigante, V.; Canesi, I.; Cinelli, P.; Coltelli, M.-B.; Lazzeri, A. Rubber Toughening of Polylactic Acid (PLA) with Poly(butylene adipate-co-terephthalate) (PBAT): Mechanical Properties, Fracture Mechanics and Analysis of Ductile-to-Brittle Behavior while Varying Temperature and Test Speed. Eur. Polym. J. 2019, 115, 125–137.spa
dc.relation.referencesNavarrete, J.I.M.; Hidalgo-Salazar, M.A.; Nunez, E.E.; Arciniegas, A.J.R. Thermal and mechanical behavior of biocomposites using additive manufacturing. Int. J. Interact. Des. Manuf. 2018, 12, 449–458.spa
dc.relation.referencesHidalgo-Salazar, M.A.; Rios, D.; Correa, J.P.; Arciniegas, A.J.R. Influence of thermal treatment on the mechanical properties of thermoplastic composites obtained by large-format 3D printing process. In Proceedings of the Technical Conference—ANTEC, Orlando, FL, USA, 7–9 May 2018.spa
dc.relation.referencesArrieta, M.P.; López, J.; Rayón, E.; Jiménez, A. Disintegrability under composting conditions of plasticized PLA–PHB blends. Polym. Degrad. Stab. 2014, 108, 307–318.spa
dc.relation.referencesHassouna, F.; Raquez, J.-M.; Addiego, F.; Toniazzo, V.; Dubois, P.; Ruch, D. New development on plasticized poly(lactide): Chemical grafting of citrate on PLA by reactive extrusion. Eur. Polym. J. 2012, 48, 404–415.spa
dc.relation.referencesLjungberg, N.;Wesslén, B. Preparation and properties of plasticized poly(lactic acid) films. Biomacromolecules 2005, 6, 1789–1796.spa
dc.relation.referencesBaiardo, M.; Frisoni, G.; Scandola, M.; Rimelen, M.; Lips, D.; Ru eux, K.; Wintermantel, E. Thermal and mechanical properties of plasticized poly(L-lactic acid. J. Appl. Polym. Sci. 2003, 90, 1731–1738.spa
dc.relation.referencesMartin, O.; Averous, L. Poly(lactic acid): Plasticization and properties of biodegradable multiphase systems. Polymer 2001, 42, 6209–6219.spa
dc.relation.referencesPillin, I.; Montrelay, N.; Grohens, Y. Thermo-mechanical characterization of plasticized PLA: Is the miscibility the only significant factor? Polymer 2006, 47, 4676–4682.spa
dc.relation.referencesLi, D.; Jiang, Y.; Lv, S.; Liu, X.; Gu, J.; Chen, Q.; Zhang, Y. Preparation of plasticized poly (lactic acid) and its influence on the properties of composite materials. PLoS ONE 2018, 13, e0193520.spa
dc.relation.referencesSungsanit, K.; Kao, N.; Bhattacharya, S.N.; Pivsaart, S. Physical and rheological properties of plasticized linear and branched pla. Korea Aust. Rheol. J. 2010, 22, 187–195.spa
dc.relation.referencesHu, Y.; Topolkaraev,V.; Hiltner, A.; Baer, E. Crystallization and phase separation in blends of high stereoregular poly(lactide) with poly(ethylene glycol). Polymer 2003, 44, 5681–5689.spa
dc.relation.referencesArmentano, I.; Fortunati, E.; Burgos, N.; Dominici, F.; Luzi, F.; Fiori, S.; Jiménez, A.; Yoon, K.; Ahn, J.; Kang, S.; et al. Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. Express Polym. Lett. 2015, 9, 583–596.spa
dc.relation.referencesLjungberg, N.; Wesslén, B. Thermomechanical film properties and aging of blends of poly(lactic acid) and malonate oligomers. J. Appl. Polym. Sci. 2004, 94, 2140–2149.spa
dc.relation.referencesKang, H.; Li, Y.; Gong, M.; Guo, Y.; Guo, Z.; Fang, Q.; Li, X. An environmentally sustainable plasticizer toughened polylactide. RSC Adv. 2018, 8, 11643–11651.spa
dc.relation.referencesMaiza, M.; Benaniba, M.T.; Quintard, G.; Massardier-Nageotte, V. Biobased additive plasticizing Polylactic acid (PLA). Polímeros 2015, 25, 581–590.spa
dc.relation.referencesMaiza, M.; Benaniba, M.T.; Massardier-Nageotte, V. Plasticizing e ects of citrate esters on properties of poly(lactic acid). J. Polym. Eng. 2016, 36, 371–380.spa
dc.relation.referencesArrieta, M.P.; Fortunati, E.; Dominici, F.; López, J.; Kenny, J.M. Bionanocomposite films based on plasticized PLA-PHB/cellulose nanocrystal blends. Carbohydr. Polym. 2015, 121, 265–275.spa
dc.relation.referencesHassouna, F.; Raquez, J.-M.; Addiego, F.; Dubois, P.; Toniazzo, V.; Ruch, D. New approach on the development of plasticized polylactide (PLA): Grafting of poly(ethylene glycol) (PEG) via reactive extrusion. Eur. Polym. J. 2011, 47, 2134–2144.spa
dc.relation.referencesLjungberg, N.; Wessle, B. Film extrusion and film weldability of poly (lactic acid) plasticized with triacetine and tributyl citrate. J. Appl. Polym. Sci. 2003, 88, 3239–3247.spa
dc.relation.referencesCastro-Aguirre, E.; Iñiguez-Franco, F.; Samsudin, H.; Fang, X.; Auras, R. Poly(lactic acid)—Mass production, processing, industrial applications, and end of life. Adv. Drug Deliv. Rev. 2016, 107, 333–366.spa
dc.relation.referencesAbdelwahab, M.; Flynn, A.; Chiou, B.-S.; Imam, S.; Orts, W.; Chiellini, E. Thermal, mechanical and morphological characterization of plasticized PLA-PHB blends. Polym. Degrad. Stab. 2012, 97, 1822–1828.spa
dc.relation.referencesLiao, J.; Brosse, N.; Hoppe, S.; Du, G.; Zhou, X.; Pizzi, A. One-step compatibilization of poly(lactic acid) and tannin via reactive extrusion. Mater. Des. 2020, 191, 108603.spa
dc.relation.referencesHidalgo, M.H.; Muñoz, M.F.; Quintana, K.J. Mechanical behavior of polyethylene aluminum composite reinforced with continuous agro fique fibers. Rev. Latinoam. Metal. Mater. 2011, 31, 187–194.spa
dc.relation.referencesHidalgo, M.H.; Muñoz, M.F.; Quintana, K.J. Mechanical analysis of polyethylene aluminum composite reinforced with short fique fibers available a in two-dimensional arrangement. Rev. Latinoam. Metal. Mater. 2012, 32, 89–95.spa
dc.relation.referencesCarreau, P.J. Rheology of Filled Polymeric Systems; Springer: Berlin/Heidelberg, Germany, 1992.spa
dc.relation.referencesTung, L.H. Melt viscosity of polyethylene at zero shear. J. Polym. Sci. 1960, 46, 409–422.spa
dc.relation.referencesFischer, E.W.; Sterzel, H.J.; Wegner, G. Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Colloid Polym. Sci. 1973, 251, 980–990.spa
dc.relation.referencesCorrea-Aguirre, J.P.; Luna-Vera, F.; Caicedo, C.; Vera-Mondragón, B.; Hidalgo-Salazar, M.A. The E ects of Reprocessing and Fiber Treatments on the Properties of Polypropylene-Sugarcane Bagasse Biocomposites. Polymers 2020, 12, 1440.spa
dc.relation.referencesHidalgo-Salazar, M.A.; Correa-Aguirre, J.P.; García-Navarro, S.; Roca-Blay, L. Injection Molding of Coir Coconut Fiber Reinforced Polyolefin Blends: Mechanical, Viscoelastic, Thermal Behavior and Three-Dimensional Microscopy Study. Polymers 2020, 12, 1507.spa
dc.relation.referencesCarrasco, F.; Pagés, P.; Gámez-Pérez, J.; Santana, O.O.; Maspoch, M. Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polym. Degrad. Stab. 2010, 95, 116–125.spa
dc.relation.referencesHancock, B.C.; Shamblin, S.L.; Zografi, G. Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharm. Res. 1995, 12, 799–806.spa
dc.relation.referencesYang, Z.; Peng, H.; Wang, W.; Liu, T. Crystallization behavior of poly("-caprolactone)/layered double hydroxide nanocomposites. J. Appl. Polym. Sci. 2010, 116, 2658–2667.spa
dc.relation.referencesWeng, Y.-X.;Wang, L.; Zhang, M.;Wang, X.-L.;Wang, Y.-Z. Biodegradation behavior of P(3HB,4HB)/PLA blends in real soil environments. Polym. Test. 2013, 32, 60–70.spa
dc.relation.referencesCourgneau, C.; Domenek, S.; Guinault, A.; Averous, L.; Ducruet, V. Analysis of the Structure-Properties Relationships of Di erent Multiphase Systems Based on Plasticized Poly(Lactic Acid). J. Polym. Environ. 2011, 19, 362–371.spa
dc.relation.referencesLjungberg, N.;Wesslén, B. The e ects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid). J. Appl. Polym. Sci. 2002, 86, 1227–1234.spa
dc.relation.referencesYasuniwa, M.; Tsubakihara, S.; Sugimoto, Y.; Nakafuku, C. Thermal analysis of the double-melting behavior of poly(L-lactic acid). J. Polym. Sci. Part B Polym. Phys. 2003, 42, 25–32.|Hidalgo-Salazar, M.A.; Salinas, E. Mechanical, thermal, viscoelastic performance and product application of PP- rice husk Colombian biocomposites. Compos. Part B Eng. 2019, 176, 107135.spa
dc.relation.referencesCaicedo, C.; López, L.M.; Alvarado, C.J.C.; Cruz-Delgado, V.J.; Avila-Orta, C.A. Biodegradable polymer nanocomposites applied to technical textiles: A review. DYNA 2019, 86, 288–299.spa
dc.relation.referencesBrostow, W.; Hagg Lobland, H.E.; Narkis, M. Sliding wear, viscoelasticity, and brittleness of polymers. J. Mater. Res. 2006, 21, 2422–2428.spa
dc.relation.referencesBrostow, W.; Hagg Lobland, H.E.; Khoja, S. Brittleness and toughness of polymers and other materials. Mater. Lett. 2015, 159, 478–480.spa
dc.relation.referencesQuero, E.; Müller, A.J.; Signori, F.; Coltelli, M.-B.; Bronco, S. Isothermal Cold-Crystallization of PLA/PBAT Blends with and without the Addition of Acetyl Tributyl Citrate. Macromol. Chem. Phys. 2012, 213, 36–48.spa
dc.relation.referencesXu, H.; Liu, C.Y.; Chen, C.; Hsiao, B.S.; Zhong, G.J.; Li, Z.M. Easy alignment and e ective nucleation activity of ramie fibers in injection-molded poly(lactic acid) biocomposites. Biopolymers 2012, 97, 825–839.spa
dc.relation.referencesCaicedo, C.; Aguirre-Loredo, R.Y.; García, A.F.; Ossa, O.H.; Arce, A.V.; Pulgarin, H.L.C.; Ávila-Torres, Y. Rheological, thermal, superficial, and morphological properties of thermoplastic achira starch modified with lactic acid and oleic acid. Molecules 2019, 24, 4433.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalBiopolymerseng
dc.subject.proposalAcetyl tributyl citrateeng
dc.subject.proposalPoly(lactic acid);eng
dc.subject.proposalDynamic mechanical analysiseng
dc.subject.proposalContact angleeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501eng
dc.type.contentTexteng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTeng
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2eng
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85eng
dc.type.versioninfo:eu-repo/semantics/publishedVersioneng


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0/