Show simple item record

dc.contributor.authorCorrea, J.
dc.contributor.authorAperador, Williamspa
dc.contributor.authorAmaya, Césarspa
dc.contributor.authorCaicedo Angulo, Julio Césarspa
dc.contributor.authorAlba de Sánchez, Nelly Ceciliaspa
dc.description.abstractThis paper presents the structural, mechanical and tribological behaviors for AISI 1045 steel uncoated and coated with Titanium Carbo-nitride (TiCN), Aluminum Chrome Nitride (CrAlN) and Boron Carbo-nitride (BCN) under lubricated and non-lubricated environments. The coating's natural effect on the crystalline structure, chemical composition, as well as the mechanical properties were determined by X-ray diffraction (XRD), X-ray photo-electron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), nanoindentation and tribological characterization techniques. The results show that the material with the lowest elastic modulus was TiCN (224 GPa), followed by CrAlN (235 GPa), and the BCN (251 GPa). The friction coefficient results for the coatings without lubrication were 0.74, 0.66 and 0.60, respectively, and with lubrication were 0.24, 0.23 and 0.21, respectively. These results indicate that the tribological properties are strongly dependent on the lubricated environment's nature and the coating's nature. Advanced surface treatments are increasingly used in the daily manufacture of parts for the metalworking and automotive industry due to high mechanical and tribological requirements; therefore, TiCN, CrAlN and BCN coatings can be used as future materials for elements subject to high stress and wear in lubricated environmentseng
dc.format.extent12 páginasspa
dc.rightsDerechos reservados - Elsiever, 2020spa
dc.titleStructural, mechanical and tribological behavior of TiCN, CrAlN and BCN coatings in lubricated and non-lubricated environments in manufactured deviceseng
dc.typeArtículo de revistaspa
dc.subject.armarcFricción (Mecánica)spa
dc.relation.citationeditionVolumen 252 (2020)spa
dc.relation.citationvolumeVolumen 252spa
dc.relation.citesCorrea, J.F., Aperador, W., Caicedo, J.C., Alba, N.C., Amaya, C. (2020). Structural, mechanical and tribological behavior of TiCN, CrAlN and BCN coatings in lubricated and non-lubricated environments in manufactured devices. Materials Chemistry and Physics, (Vol. 252 (20), pp. 1-12).
dc.relation.ispartofjournalMaterials Chemistry and Physicseng
dc.relation.referencesJ.C. Caicedo, C. Amaya, L. Yate, M.E. Gómez, G. Zambrano, TiCN/TiNbCN multilayer coatings with enhanced mechanical properties, Appl. Surf. Sci. 256 (20) (2010) 5898–5904.eng
dc.relation.referencesP.V. Kola, S. Daniels, D.C. Cameron, M.S.J. Hashmi, Magnetron sputtering of tin protective coatings for medical applications, Mater. Process. Technol. 56 (1–4) (1996) 422–430.eng
dc.relation.referencesP. Panjan, et al., “Carbon-containing Ti–C:H and Cr–C:H PVD hard coatings, Vacuum 71 (1–2) (2003) 261–265.eng
dc.relation.referencesE.Y. Choi, C.S. Jang, M.C. Kang, K.H. Kim, Synthesis and characterization of Ti-cx- N1-x coatings prepared by arc ion plating 118 (2006) 311–316.eng
dc.relation.referencesT. Moskalewicz, B. Wendler, S. Zimowski, B. Dubiel, A. Czyrska-filemonowicz, “Microstructure, micro-mechanical and tribological properties of the nc-WC/a-C nanocomposite coatings magnetron sputtered on non-hardened and oxygen hardened Ti – 6Al – 4V alloy, Surf. Coating. Technol. 205 (7) (2010) 2668–2677.eng
dc.relation.referencesC. Escobar, J.C. Caicedo, H.H. Caicedo, M. Mozafari, Design of hard surfaces with metal (Hf/V) nitride multinanolayers, J. Superhard Master. 36 (6) (2014) 366–367.eng
dc.relation.referencesJ.E. Sánchez, O.M. Sánchez, L. Ipaz, W. Aperador, J.C. Caicedo, C. Amaya, M. A. Hernández Landaverde, F. Espinoza Beltran, J. Mu~noz-Salda~na, G. Zambrano, Mechanical, tribological and electrochemical behavior of Cr1-xAlxN coatings deposited by r.f . reactive magnetron co-sputtering method, Appl. Surf. Sci. 256eng
dc.relation.references(2010) 2380–2387. [8] H.C. Barshilia, B. Deepthi, K.S. Rajam, Deposition and characterization of CrN/ Si3N4 and CrAlN/Si3N4 nanocomposite coatings prepared using reactive DC unbalanced magnetron sputtering, Surf. Coating. Technol. 201 (24) (2007) 9468–9475.eng
dc.relation.referencesO.M. Sánchez Quintero, W. Aperador Chaparro, L. Ipaz, J.E. Sánchez Barco, F. Espinoza Beltrán, G. Zambrano, Influence of the microestructure on the electrochemical porperties of Al-Cr-N coatings deposited by Co-sputtering method from a Cr-Al binary target, Mater. Res. 16 (1) (2013) 204–214.eng
dc.relation.referencesS. Surviliene, S. Bellozor, M. Kurtinaitiene, V.A. Safonov, Protective properties of the chromium-titanium carbonitride composite coatings, Surf. Coating. Technol. 176 (2) (2004) 193–201.eng
dc.relation.referencesH. Feng, C. Hsu, J. Lu, Y. Shy, Effects of PVD sputtered coatings on the corrosion resistance of AISI 304 stainless steel, Mater. Sci. Eng., A 349 (1–2) (2003) 73–79.eng
dc.relation.referencesG.S. Kim, S.Y. Lee, J.H. Hahn, B.Y. Lee, J.G. Han, J.H. Lee, S.Y. Lee, Effects of the thickness of Ti buffer layer on the mechanical properties of TiN coatings, Surf. Coating. Technol. 171 (1–3) (2003) 83–90.eng
dc.relation.referencesB. Warcholinski, A. Gilewicz, Z. Kuklinski, P. Myslinski, Arc-evaporated CrN , CrN and CrCN coatings, Vacuum 83 (4) (2009) 715–718eng
dc.relation.referencesM. Balaceanu, et al., Characterization of Zr-based hard coatings for medical implant applications, Surf. Coating. Technol. 204 (12–13) (2010) 2046–2050.eng
dc.relation.referencesN. Madaoui, N. Saoula, B. Zaid, D. Saidi, A. Si Ahmed, Structural, mechanical and electrochemical comparison of TiN and TiCN coatings on XC48 steel substrates in NaCl 3.5% water solution, Appl. Surf. Sci. 312 (2014) 134–138.eng
dc.relation.referencesJ.C. Caicedo, G. Zambrabo, W. Aperador, L. Escobar-Alarcon, E. Camps, Mechanical and electrochemical characterization of vanadium nitride (VN) thin films, Appl. Surf. Sci. 258 (1) (2011) 312–320.eng
dc.relation.referencesC. Adelhelm, M. Balden, F. Kost, A. Herrmann, S. Lindig, Thermal induced structural changes of a-C and a-C:Ti films analized by NEXAFS and XPS, J. Phys. 100 (2008) 10–14.eng
dc.relation.referencesJ.L. Endrino, G.S. Fox-Rabinovich, A. Reiter, S.V. Veldhuis, R. Escobar Galindo, J. M. Albella, J.F. Marco, Oxidation tuning in AlCrN coatings, Surf. Coating. Technol. 201 (8) (2007) 4505–4511.eng
dc.relation.referencesH. Riascos, J. Neidhardt, G.Z. Radnoczi, J. Emmerlich, G. Zambrano, L. Hultman, P. Prieto, Structure and properties of pulsed-laser deposited carbon nitride thin films, Thin Solid Films 497 (1–2) (2006) 1–6.eng
dc.relation.referencesW.F. Piedrahita, W. Aperador, J.C. Caicedo, P. Prieto, Evolution of physical properties in hafnium carbonitride thin films, J. Alloys Compd. 690 (1) (2017) 485–496.eng
dc.relation.referencesASTM G99-17, Standard Test Method for Wear Testing with a Pin-On-Disk Apparatus, 2017, pp. 1–6.eng
dc.relation.referencesASTM G171-03, Standard Test Method for Scratch Hardness of Materials Using a Diamond Stylus, 2017, pp. 1–7.eng
dc.relation.referencesP.E. Hovsepian, A.P. Ehiasarian, I. Petrov, Structure evolution and properties of TiAlCN/VCN coatings deposited by reactive HIPIMS, Surf. Coating. Technol. 257 (2014) 38–47.eng
dc.relation.referencesJ.C. Caicedo, W. Aperador, M. Mozafari, L. Tirado, Evidence of electrochemical resistance on ternary V-C-N layers, Siliconindia 10 (6) (2018) 2499–2507.eng
dc.relation.referencesA. Vyas, K.Y. Li, Z.F. Zhou, Y.G. Shen, Synthesis and characterization of CNx/TiN multilayers on Si(100) substrates, Surf. Coating. Technol. 200 (7) (2005) 2293–2300.eng
dc.relation.referencesJ.E. Nocua, G. Morell, F. Piazza, V.R. Weiner, Síntesis y caracterización de nanoestructuras estequiometrias de nitruro de boro, Superf. y vacío 25 (3) (2012) 194–198.eng
dc.relation.referencesL. Ipaz, W. Aperador, J. Caicedo, J. Esteve, G. Zambrano, A practical application of X-ray spectroscopy in Ti-Al-N and Cr-Al-N thin films, X Ray Spectrom. (2012) 21–38.eng
dc.relation.referencesH.O. Pierson, Handbook of Refractory Carbides and Nitrides, 1996, pp. 1–340.eng
dc.relation.referencesJ.F. Archard, Contact and rubbing of flat surfaces, J. Appl. Phys. 24 (8) (2004).eng
dc.relation.referencesA. Leyland, A. Matthews, On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour, Wear 246 (1–2) (2000) 1–11.eng
dc.relation.referencesJ. Esteve, E. Martinez, A. Lousa, F. Montala, L.L. Carreras, Microtribological characterization of group V and VI metal-carbide wear-resistant coatings effective in the metal casting industry, Surf. Coating. Technol. 133 (134) (2000) 314–318.eng
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalBCN coatingseng
dc.subject.proposalFriction coefficienteng
dc.subject.proposalLubricated environmentseng

Files in this item


This item appears in the following Collection(s)

Show simple item record

Derechos reservados - Elsiever, 2020
Except where otherwise noted, this item's license is described as Derechos reservados - Elsiever, 2020