Show simple item record

dc.contributor.authorLaín Beatove, Santiagospa
dc.contributor.authorCortés, Pablospa
dc.contributor.authorLópez, Omar Daríospa
dc.description.abstractIn this study, three-dimensional transient numerical simulations of the flow around a cross flow water turbine of the type H-Darrieus are performed. The hydrodynamic characteristics and performance of the turbine are investigated by means of a time-accurate unsteady Reynolds-averaged Navier–Stokes (URANS) commercial solver (ANSYS-Fluent v. 19) where the time dependent rotor-stator interaction is described by the sliding mesh approach. The transition shear stress transport turbulence model has been employed to represent the turbulent dynamics of the underlying flow. Computations are validated versus previous experimental work in terms of the turbine efficiency curve showing good agreement between numerical and experimental values. The behavior of the power and force coefficients as a function of turbine angular speed is analyzed. Moreover, visualizations and analyses of the instantaneous vorticity iso-surfaces developing at different blade rotational velocities are presented including a few movies as additional material. Finally, the fluid variables fields are averaged along a turbine revolution and are compared with the steady predictions of simplified steady approaches based on the blade element momentum theory and the double multiple streamtube method (BEM-DMS)eng
dc.format.extent27 páginasspa
dc.rightsDerechos reservados - Energies, 2020spa
dc.titleNumerical simulation of the flow around a straight blade darrieus water turbineeng
dc.typeArtículo de revistaspa
dc.subject.armarcTurbinas hidráulicasspa
dc.relation.citationeditionVolumen 13, número 5 (2020)spa
dc.relation.citesLain, S., Cortés P., López O. D. (2020). Numerical simulation of the flow around a straight blade darrieus water turbine. Revista Energies. Vol 13 (5), 1-27. DOI:10.3390/en13051137eng
dc.relation.referencesDai, Y.M.; Lam,W. Numerical study of straight-bladed Darrieus-type tidal turbine. Proc. Inst. Civ. Eng. Energy 2009, 162, 67–76.eng
dc.relation.referencesDai, Y.M.; Gardiner, N.; Sutton, R.; Dyson, P.K. Hydrodynamic analysis models for the design of Darrieus-type vertical-axis marine current turbines. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2011, 225, 295–307.eng
dc.relation.referencesLópez, O.; Meneses, D.; Quintero, B.; Laín, S. Computational study of transient flow around Darrieus type Cross FlowWater Turbines. J. Renew. Sustain. Energy 2016, 8, 014501.eng
dc.relation.referencesTrivedi, C.; Cervantes, M.J.; Dahlhaug, O.G. Experimental and numerical studies of a high-head Francis turbine: A review of the Francis-99 test case. Energies 2016, 9, 74.eng
dc.relation.referencesTrivedi, C.; Cervantes, M.J.; Gandhi, B.K. Investigation of a high head Francis turbine at runaway operating conditions. Energies 2016, 9, 149.eng
dc.relation.referencesLaín, S.; García, M.; Quintero, B.; Orrego, S. CFD Numerical simulations of Francis turbines. Rev. Fac. Ing. Univ. Antioq. 2010, 51, 24–33.eng
dc.relation.referencesGöz, M.F.; Laín, S.; Sommerfeld, M. Study of the numerical instabilities in Lagrangian tracking of bubbles and particles in two-phase flow. Comput. Chem. Eng. 2004, 28, 2727–2733. [eng
dc.relation.referencesJin, X.; Zhao, G.; Gao, K.; Ju, W. Darrieus vertical axis wind turbine: Basic research methods. Renew. Sustain. Energy Rev. 2015, 42, 212–225.eng
dc.relation.referencesFerreira, C.S. The Near Wake of the VAWT, 2D and 3D Views of the VAWT Aerodynamics. Ph.D. Thesis, Technical University of Lisbon, Lisbon, Portugal, 2009.eng
dc.relation.referencesHowell, R.; Qin, N.; Edwards, J.; Durrani, N. Wind tunnel and numerical study of a small vertical axis wind turbine. Renew. Energy 2010, 35, 412–422.eng
dc.relation.referencesHill, N.; Dominy, R.; Ingram, G.; Dominy, J. Darrieus turbines: The physics of self-starting. Proc. Inst. Mech. Eng. Part A 2008, 223, 21–29.eng
dc.relation.referencesUntaroiu, A.; Wood, H.G.; Allaire, P.E.; Ribando, R.J. Investigation of Self-Sarting Capability of Vertical Axis Wind Turbines Using a Computational Fluid Dynamics Approach. J. Solar Energy Eng. 2011, 133, 041010.eng
dc.relation.referencesCastelli, M.R.; Benini, E. E ect of Blade Inclination Angle of a DarrieusWind Turbine. J. Turbomach. 2012, 134, 031016eng
dc.relation.referencesSiddiqui, M.S.; Durrani, N.; Akhtar, I. Quantification of the e ects of geometric approximations on the performance of a vertical axis wind turbine. Renew. Energy 2015, 74, 661–670.eng
dc.relation.referencesGhasemian, M.; Najafian Ashrafi, Z.; Sedaghat, A. A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines. Energy Convers. Manag. 2017, 149, 87–100.eng
dc.relation.referencesLaín, S.; Osorio, C. Simulation and evaluation of a straight-bladed Darrieus-type cross flow marine turbine. J. Sci. Ind. Res. 2010, 69, 906–912.eng
dc.relation.referencesMaître, T.; Amet, E.; Pellone, C. Modeling of the flow in a Darrieus water turbine: Wall grid refinement analysis and comparison with experiments. Renew. Energy 2013, 51, 497–512.eng
dc.relation.referencesBalduzzi, F.; Bianchini, A.; Malece, R.; Ferrara, G.; Ferrari, L. Critical issues in the CFD simulation of Darrieus wind Turbines. Renew. Energy 2016, 85, 419–435.eng
dc.relation.referencesAmet, E. Simulation Numérique d’une Hydrolienne à Axe Vertical de Type Darrieus. Ph.D. Thesis, Institut Polytechnique de Grenoble, Grenoble, France, 2009.eng
dc.relation.referencesHall, T.J. Numerical Simulation of a Cross Flow Marine Hydrokinetic Turbine. Master’s Thesis, University of Washington,Washington, DC, USA, 2012.eng
dc.relation.referencesMenter, F.J. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA J. 1994, 32, 269–289.eng
dc.relation.referencesPellone, C.; Maître, T.; Amet, E. 3D RANS modeling of a cross flow water turbine. In Advances in Hydroinformatics; Gourbesville, P., Cunge, J., Caignaert, G., Eds.; Springer: Heidelberg, Germany, 2014; pp. 405–418. ISBN 978-981-287-615-7.eng
dc.relation.referencesMarsh, P.; Ranmuthugala, D.; Penesis, I.; Thomas, G. Numerical investigation of blade helicity on the performance characteristics of vertical axis tidal turbines. Renew. Energy 2015, 81, 926–935.eng
dc.relation.referencesMarsh, P.; Ranmuthugala, D.; Penesis, I.; Thomas, G. The influence of turbulence model and two and three-dimensional domain selection on the simulated performance characteristics of vertical axis tidal turbines. Renew. Energy 2017, 105, 106–116.eng
dc.relation.referencesLópez, O.D.; Quiñones, J.J.; Laín, S. RANS and Hybrid RANS-LES Simulations of an H-Type Darrieus Vertical AxisWater Turbine. Energies 2018, 11, 2348.eng
dc.relation.referencesLaín, S.; Taborda, M.A.; López, O.D. Numerical study of the e ect of winglets on the performance of a straight blade Darrieus water turbine. Energies 2018, 11, 297.eng
dc.relation.referencesMannion, B.; Leen, S.; Nash, S. A two and three-dimensional CFD investigation into performance prediction and wake characterisation of a vertical axis turbine. J. Renew. Sustain. Energy 2018, 10, 034503.eng
dc.relation.referencesBachant, P.; Wosnik, M. E ects of Reynolds number on the energy conversion and near-wake dynamics of a high solidity vertical-axis cross-flow turbine. Energies 2016, 9, 73.eng
dc.relation.referencesAl-Dabbagh, M.; Yuce, M. Numerical evaluation of helical hydrokinetic turbines with di erent solidities under di erent flow conditions. Int. J. Environ. Sci. Technol. 2019, 16, 4001–4012.eng
dc.relation.referencesYang, B.; Shu, X. Hydrofoil optimization and experimental validation in helical vertical axis turbine for power generation from marine current. J. Ocean Eng. 2012, 42, 35–46.eng
dc.relation.referencesGuillaud, N.; Balarac, G.; Goncalves, E.; Zanette, J. Large Eddy Simulations on Vertical Axis Hydrokinetic Turbines -Power coe cient analysis for various solidities. Renew. Energy 2020, 147, 473–486.eng
dc.relation.referencesBayram Mohamed, A.; Bear, C.; Bear, M.; Korobenko, A. Performance analysis of two vertical-axis hydrokinetic turbines using variational multiscale method. Comput. Fluids 2020, 200, 104432.eng
dc.relation.referencesShamsoddin, S.; Porté-Agel, F. Large Eddy Simulation of Vertical Axis Wind Turbines wakes. Energies 2014, 7, 890–912.eng
dc.relation.referencesShamsoddin, S.; Porté-Agel, F. A Large Eddy Simulation study of Vertical Axis Wind Turbines wakes in the Atmospheric Boundary Layer. Energies 2016, 9, 366.eng
dc.relation.referencesHezaveh, S.H.; Bou-Zeid, E.; Lohry, M.W.; Martinelli, L. Simulation and wake analysis of a single vertical axis wind turbine. Wind Energy 2017, 20, 713–730.eng
dc.relation.referencesGuo, Q.; Zhou, L.J.; Xiao, Y.X.; Wang, Z.W. Flow field characteristics analysis of a horizontal axis marine current turbine by large eddy simulation. IOP Conf. Ser. Matter Sci. Eng. 2013, 52, 052017.eng
dc.relation.referencesBangga, G.; Dessoky, A.; Lutz, T.; Krämer, E. Improved double-multiple-streamtube approach for H-Darrieus vertical axis wind turbine computations. Energy 2019, 182, 673–688.eng
dc.relation.referencesMcLaren, K.; Tullis, S.; Ziada, S. Computational fluid dynamics simulation of the aerodynamics of a high solidity, small scale vertical axis wind turbine. Wind Energy 2012, 15, 349–361.eng
dc.relation.referencesMcNaughton, J.; Billard, F.; Revell, A. Turbulence modelling of low Reynolds number flow e ects around a vertical axis turbine at a range of tip-speed ratios. J. Fluids Struct. 2014, 47, 124–138.eng
dc.relation.referencesLangtry, R.B.; Menter, F.R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J. 2009, 47, 2894–2906.eng
dc.relation.referencesLangtry, R.B. A Correlation Based Transition Model Using Local Variables for Unstructured Parallelized CFD Codes. Ph.D. Thesis, University of Stuttgart, Stuttgart, Germany, 2006.eng
dc.relation.referencesDelafin, P.L.; Nishino, T.; Kolios, A.; Wang, L. Comparison of low-order aerodynamic models and RANS CFD for full scale vertical axis wind turbines. Renew. Energy 2017, 109, 564–575.eng
dc.relation.referencesSpentzos, A.; Barakos, G.; Badcock, K.; Richards, B.; Wernert, P.; Schreck, S.; Ra el, M. Investigation of Three-Dimensional Dynamic Stall Using Computational Fluid Dynamics. AIAA J. 2005, 43, 1023–1033.eng
dc.relation.referencesParaschivoiu, I. Wind Turbine Design with Emphasis on Darrieus Concept; Polytechnic International Press: Monteral, QC, Canada, 2002.eng
dc.relation.referencesMarten, D.; Wendler, J.; Pechlivanoglou, G.; Nayeri, C.N.; Paschereit, C.O. Qblade: An open source tool for design and simulation of horizontal and vertical axis wind turbines. Int. J. Emerg. Technol. Adv. Eng. 2013, 3, 264–269.eng
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalCFD numerical simulationeng
dc.subject.proposalUnsteady analysiseng
dc.subject.proposalCross flow water turbineeng
dc.subject.proposalTransition turbulence modeleng

Files in this item


This item appears in the following Collection(s)

Show simple item record

Derechos reservados - Energies, 2020
Except where otherwise noted, this item's license is described as Derechos reservados - Energies, 2020