Show simple item record

dc.contributor.authorHidalgo Salazar, Miguel Ángel
dc.date.accessioned2021-09-14T12:35:11Z
dc.date.available2021-09-14T12:35:11Z
dc.date.issued2016-11-30
dc.identifier.urihttps://hdl.handle.net/10614/13204
dc.description.abstractThe viscoelastic behavior and performance to creep of biocomposites made from fique natural fiber and low-density polyethylene-aluminum (LDPE–Al) obtained from recycled long-life packages were studied. A relationship was observed between the creep mechanical responses of biocomposites with respect to natural fibers. Additionally, the four and six parameters of the mathematical model were calculated from the creep curves. A very good agreement between the experimental data and the theoretical curves was obtained in the fluency region. The relationship between interfacial fiber or filler and the polymer matrix is an indicator of mechanical performance of biocomposite, regardless of the application that you want to give. It is known that the mechanical and viscoelastic properties depend on the application time of loading, the type of load, temperature, micromechanics relationship between the natural fiber and the matrix, the type of anchor prevailing for the transfer effort to micro- and nano-levels and cannot be treated mathematically only by the laws of solids or fluids, viscoelastic behavior of biocomposites. It is possible to obtain mathematical models that fit different rheological phenomena; for example, creep and stress relaxation can be modeled and correlated with biocomposite experiment using dynamic mechanical analysis (DMA).eng
dc.format.extent29 páginasspa
dc.format.mimetypeapplication/pdfeng
dc.language.isoengspa
dc.publisherInTechOpenspa
dc.rightsDerechos reservados - InTechOpen, 2021spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleViscoelastic performance of biocompositeseng
dc.typeCapítulo - Parte de Librospa
dcterms.audienceGeneralspa
dc.contributor.corporatenameInTechOpeneng
dc.description.editionprimera ediciónspa
dc.publisher.placeJaneza Trdine 9, 51000 Rijeka, Croatiaspa
dc.relation.citationedition1spa
dc.relation.citationendpage331spa
dc.relation.citationstartpage303spa
dc.relation.ispartofbookComposites from renewable and sustainable materialseng
dc.relation.references[1] Väisänen T, Haapala A, Lappalainen R, Tomppo L. Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review. Waste Manag. 2016; 54:62–73.spa
dc.relation.references[2] Thakur VK, Thakur MK, Gupta RK. Review: raw natural fiber-based polymer composites, Int. J. Polym. Anal. Charact. 2014; 19:256–271.spa
dc.relation.references[3] Rana A, Mitra B, Banerjee A. Short jute fiber-reinforced polypropylene composites: dynamic mechanical study. J. Appl. Polym. Sci. 1999; 71:531–539.spa
dc.relation.references[4] Puglia D, Biagiotti J, Kenny J. A review on natural fibre-based composites—Part II: application of natural reinforcements in composite materials for automotive industry. J. Nat. Fibers. 2005; 1:23–65.spa
dc.relation.references[5] Prithivirajan, R, Jayabal S, Bharathiraja G. Bio-based composites from waste agricultural residues: mechanical and morphological properties. Cellulose Chem. Technol. 2015; 49, 65–68.spa
dc.relation.references[6] Xu Y, Wu Q, Lei Y, Yao F. Creep behavior of bagasse fibre reinforced polymer composites. Bioresour. Technol. 2010; 101:3280–3286.spa
dc.relation.references[7] Suardana NPG, Piao Y, Lim JK. Mechanical properties of hemp fibers and hemp/PP composites: effects of chemical surface treatment. Mater. Phys. Mech. 2011; 11:1–8.spa
dc.relation.references[8] OmraniE, MenezesP L, RohatgiP K. State of the art on tribological behavior of polymer matrix composites reinforced with naturalfibersin the green materials world. Int. J. Eng. Sci. Technol. 2016; 19(2):717–736.spa
dc.relation.references[9] Ahmad F, Choi HS, Park MK. A review: natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromol. Mater. Eng. 2015; 300:10–24.spa
dc.relation.references[10] Acha BA, Reboredo MM, Marcovich NE. Creep and dynamic mechanical behavior of PP–jute composites: effect of the interfacial adhesion. Compos. Part A: Appl. Sci. Manuf. 2007; 38:1507–1516.spa
dc.relation.references[11] Premalal HG, Ismail H, Baharin A. Comparison of the mechanical properties of rice husk powder filled polypropylene composites with talc filled polypropylene composites. Polym. Test.2002; 21:833–839.spa
dc.relation.references[12] Nuñez AJ, Marcovich NE, Aranguren MI. Short-term and long-term creep of polypropylene– wood flour composites. Polym. Eng. Sci. 2004; 44(8):1594–1603.spa
dc.relation.references[13] Reddy N, Yang Y. Preparation and characterization of long natural cellulose fibers from wheat straw. J. Agric. Food. Chem. 2007; 55:8570–8575.spa
dc.relation.references[14] Delvasto S, Toro E, Perdomo F, Mejía R. An appropriate vacuum technology for manufacture of corrugated fique fibre reinforced cementitious sheets. Constr. Build. Mater. 2010; 24:187–192.spa
dc.relation.references[15] Gurunathan T, Mohanty S, Nayak SK. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos. Part A. 2015; 77:1e25.spa
dc.relation.references[16] Sood M, Dharmpal D, Gupta VK. Effect of fiber chemical treatment on mechanical properties of sisal fiber/recycled HDPE composite. Mater. Today: Proc. 2015; 2(4–5): 3149–3155.spa
dc.relation.references[17] Gómez C, Vázquez A. Flexural properties loss of unidirectional epoxy/fique composites immersed in water and alkaline medium for construction application. Compos. Part B: Eng. 2012; 43(8):3120–3130.spa
dc.relation.references[18] Greco F, Leonetti L, Nevone Blasi P. Adaptive multiscale modeling of fiber reinforced composite materials subjected to transverse micro cracking. Compos. Struct. 2014; 113:249–63.spa
dc.relation.references[19] Ramesh M, Atreya TSA, Aswin US, Eashwar H, Deepa C. Processing and mechanical property evaluation of banana fiber reinforced polymer composites. Procedia Eng. 2014; 97:563–572.spa
dc.relation.references[20] N Uddin, Developments in Fiber-Reinforced Polymer (FRP) Composites for Civil Engineering, 1st ed. Woodhead Publishing; 2013. p. 18-26.spa
dc.relation.references[21] Venkateshwaran N, Elaya Perumal A, Arunsundaranayagam D. Fiber surface treatment and its effect on mechanical and visco-elastic behaviour of banana/epoxy composite. Mater. Design. 2013; 47:151–159.spa
dc.relation.references[22] Chin CW, Yousif BF. Potential of kenaf fibres as reinforcement for tribological applications. Wear. 2009; 267(9–10):1550–1557.spa
dc.relation.references[23] Zhan J, Song L, Nie S, Hu Y. Combustion properties and thermal degradation behavior of polylactide with an effective intumescent flame retardant. Polym. Degrad. Stabil. 2009; 94(3):291–296.spa
dc.relation.references[24] Kim SJ, Moon JB, Kim GH, Ha CS. Mechanical properties of polypropylene/natural fiber composites: comparison of wood fiber and cotton fiber. Polym. Test. 2008; 27:801– 806.spa
dc.relation.references[25] Le Troedec M, Sedan D, Peyratout C et al., “Influence of various chemical treatments on the composition and structure of hemp fibres.” Compos. Part A: Appl. Sci. Manuf. 2008; 39(3):514–522.spa
dc.relation.references[26] John MJ, Francis B, Varughese KT, Thomas S. Effect of chemical modification on properties of hybrid fiber biocomposites. Compos. Part A: Appl. Sci. Manuf. 2008; 39(2): 352–363.spa
dc.relation.references[27] D. Dai, M. Fan. Wood fibres as reinforcements in natural fibre composites: structure, properties, processing and applications. In: A. Hodzic and R. Shanks, editors. Natural Fibre Composites Materials, Processes and Applications. Woodhead Publishing Limited: 2014. p.3–65. DOI:10.1533/9780857099228.1.3spa
dc.relation.references[28] May-Pat A, Valadez-González A, Herrera-Franco PJ. Effect of fiber surface treatments on the essential work of fracture of HDPE-continuous henequen fiber-reinforced composites.” Polym. Test. 2013; 32(3):1114–1122.spa
dc.relation.references[29] Kumari R, Ito H, Takatani M, Uchiyama M, Okamoto T. Fundamental studies on wood/ cellulose-plastic composites: effects of composition and cellulose dimension on the properties of cellulose/PP composite. J. Wood. Sci. 2007; 53:470–80.spa
dc.relation.references[30] Bocz K, Szolnoki B, Marosi A, T´abi T, Wladyka-Przybylak M, Marosi G. Flax fibre reinforced PLA/TPS biocomposites flame retarded with multifunctional additive system. Polym. Degrad. Stabil. 2014; 106:63–73.spa
dc.relation.references[31] Tawakkal ISMA, Cran MJ, Bigger SW, Effect of kenaf fibre loading and thymol concentration on the mechanical and thermal properties of PLA/kenaf/thymol composites. Ind. Crops Prod. 2014; 61:74–83.spa
dc.relation.references[32] Graupner N, Herrmann AS, M¨ussig J. Natural and man-made cellulose fibre-reinforced poly (lactic acid) (PLA) composites: an overview about mechanical characteristics and application areas. Compos. Part A: Appl. Sci. Manuf. 2009; 40(6–7):810–821.spa
dc.relation.references[33] Rong MZ, Zhang, MQ, Liu Y, Yang GC and Zeng HM. “The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites.” Compos. Sci. Technol. 2001; 61(10):1437–1447.spa
dc.relation.references[34] Faruk O, Bledzki AK, Fink HP. Sain M. Biocomposites reinforced with natural fibers: 2000–2010.” Prog. Polym. Sci. 2012; 37(11):1552–1596.spa
dc.relation.references[35] Hidalgo Salazar MA, Munoz Velez MF, Quintana KJ. Mechanical analysis of polyethylene aluminum composite reinforced with short fique fibers available a in twodimensional arrangement; Revista Latinoamericana De Metalurgia Y Materiales. 2012; 31(1): 89–95.spa
dc.relation.references[36] Shinoj S, Visvanathan R, Panigrahi S, Kochubabu M. Oil palm fiber (OPF) and its composites: a review. Ind. Crops Prod. 2011; 33(1):7–22.spa
dc.relation.references[37] Miguel A. Hidalgo-Salazar, Mario F. Muñoz, and José H. Mina. Influence of incorporation of natural fibers on the physical, mechanical, and thermal properties of composites LDPE-Al reinforced with fique fibers: International Journal of Polymer Science. Volume 2015 (2015), Article ID 386325, 8 pages. DOI:10.1155/2015/386325spa
dc.relation.references[38] Jawaid M. Abdul Khalil HPS. Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohydr. Polym. 2011; 86(1):1–18.spa
dc.relation.references[39] Väisänen T, Haapala A, Lappalainen R, Tomppo L. Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites. Waste Manage. 2016; 54:62–73.spa
dc.relation.references[40] Frédérique T, Vincent P, Violaine GR, Boubakar ML. Nonlinear tensile behaviour of elementary hemp fibres. Part II: Modelling using an anisotropic viscoelastic constitutive law in a material rotating frame. Compos. Part A: Appl. Sci. Manuf. 2015; 68:346–355.spa
dc.relation.references[41] Hidalgo MA, Muñoz MF, Quintana KJ. Mechanical behavior of polyethylene aluminum composite reinforced with continuous agro fique fibers. Revista Latinoamericana de Metalurgia y Materiales. 2011; 31(2):187–194.spa
dc.relation.references[42] Delvasto S, de Gutiérrez R, Váldez Y. Comparative study of the pull-out behavior of fique fibers in mortars of Portland cement. In: Brazilian Conference on Non-conventional Materials and Technologies (NOCMAT): Affordable Housing and Infrastructure; 2004; Brazilspa
dc.relation.references[43] Gañán P, Mondragon I. Fique fiber-reinforced polyester composites: effects of fiber surface treatments on mechanical behavior. J. Mater. Sci. 2004; 39(9):3121–3128.spa
dc.relation.references[44] Li Y, Shen YO. The use of sisal and henequen fibres as reinforcements in composites. In: Omar Faruk and Mohini Sain, editors. Biofiber Reinforcements in Composite Materials. Elsevier Ltd: 2015: p. 165–210. DOI:10.1533/9781782421276.2.165spa
dc.relation.references[45] Aziz SH, Ansell MP. The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1—Polyester resin matrix. Compos. Sci. Technol. 2004; 64:1219–30.spa
dc.relation.references[46] Saba N, Jawaid M, Alothman OY, Paridah MT. A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr. Build. Mater.. March 2016; 106(1):149–159.spa
dc.relation.references[47] Maurya HO, Gupta MK, Srivastava RK, Singh H. Study on the mechanical properties of epoxy composite using short sisal fibre. Mater. Today: Proc. 2015; 2(4–5):1347–1355.spa
dc.relation.references[48] Herrera-Franco PJ, Valadez-González A. A study of the mechanical properties of short natural-fiber reinforced composites. Compos. Part B: Eng. 2005; 36: 597–608.spa
dc.relation.references[49] Cheung HY, Ho MP, Lau KT, Cardona F, Hui D. Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Compos. Part B: Eng. 2009; 40:655e63.spa
dc.relation.references[50] Martins C, Pinto V, Rui Guedes M, Marques AT. Creep and stress relaxation behaviour of pla-cl fibres—a linear modelling approach. Procedia Eng. 2015; 114:768–775.spa
dc.relation.references[51] Dobah Y, Bourchak M, Bezazi A, Belaadi A. Static and fatigue strength characterization of sisal fiber reinforced polyester composite material. In: 9th International Conference on Composite Science and Technology: 2020 - Scientific and Industrial Challenges (ICCST/9); 24–26 April 2013; Sorrento, Naples, Italy.spa
dc.relation.references[52] Jabbar A, Militky J, Madhukar Kale B, Rwawiire S, Nawabb Y, Baheti V. Modeling and analysis of the creep behavior of jute/green epoxy composites incorporated with chemically treated pulverized nano/micro jute fibers. Ind. Crops Prod. 2016; 84:230– 240.spa
dc.relation.references[53] Kiguchi M. Latest market status of wood and wood plastic composites in North America and Europe. In: The Second Wood and Wood Plastic Composites Seminar in the 23rd Wood Composite Symposium, Kyoto, Japan; 2007. pp. 61–73.spa
dc.relation.references[54] Belaadi A, Bezazi A, Maache M, Scarpa F. Fatigue in sisal fiber reinforced polyester composites: hysteresis and energy dissipation. Procedia Eng. 2014; 74:325–328.spa
dc.relation.references[55] Haq S, Srivastava R. Measuring the influence of materials composition on nano scale roughness for wood plastic composites by AFM. Measurement. 2016; 91:541–547.spa
dc.relation.references[56] Fibre properties and crashworthiness parameters of natural fibre-reinforced composite structure: A literature review. Compos. Struct. 2016; 148:59–73.spa
dc.relation.references[57] Ascione L, Berardi V, D’Aponte A. Creep phenomena in FRP materials. Mech. Res. Commun. 2012; 43:15–21.spa
dc.relation.references[58] Miguel A. Hidalgo-Salazar, José H. Mina, Pedro J. Herrera-Franco: The effect of interfacial adhesion on the creep behaviour of LDPE–Al–Fique composite materials. Composites Part B: Engineering. 2013; 55: 345–351. DOI: 10.1016/j.compositesb. 2013.06.032spa
dc.relation.references[59] Pothan LA, Oommen Z, Thomas S. Dynamic mechanical analysis of banana fiber reinforced polyester composites. Compos. Sci. Technol. 2003; 63:283–93.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalBiocompositeseng
dc.subject.proposalDMAeng
dc.subject.proposalNatural fibereng
dc.subject.proposalFique fibereng
dc.subject.proposalViscoelastic behavioreng
dc.subject.proposalMathematical modelseng
dc.type.coarhttp://purl.org/coar/resource_type/c_3248eng
dc.type.contentTexteng
dc.type.driverinfo:eu-repo/semantics/bookParteng
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2eng
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85eng
dc.type.versioninfo:eu-repo/semantics/publishedVersioneng


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Derechos reservados - InTechOpen, 2021
Except where otherwise noted, this item's license is described as Derechos reservados - InTechOpen, 2021