Show simple item record

dc.contributor.authorMoreno-Chuquen, Ricardo
dc.contributor.authorCantillo-Luna, Sergio
dc.date.accessioned2021-03-26T16:24:07Z
dc.date.available2021-03-26T16:24:07Z
dc.date.issued2020-12
dc.identifier.issn18276660
dc.identifier.urihttps://hdl.handle.net/10614/12917
dc.description.abstractThe optimal power flow is an important tool for power system planning and power system operation. It is used in a 24-hour period to find an economic dispatch of generating units considering network restrictions. The optimal power flow provides valuable information about the operation cost, the transmission flows, the generation and the congestion in the system. This information is used by generators, planners, operators and regulators in order to analyze and take decisions about the system at short and long term. The first one corresponds to the information for the operation. The second one corresponds to the information for the planning. This paper proposes a detailed optimal power flow formulation looking for a minimum cost of generation considering wind generation. Five solvers (CBC, CLP, CPLEX, Gurobi and GLPK.) have been used in order to compare differences between them. These solvers are commonly used to solve the multiperiod DC optimal power flow. An IEEE-24 test system is used to compare the solutions provided by the solvers. The findings reveal significant differences between the solvers when they are used to solve the IEEE-24 test system. Additionally, the computing time for each solver is reported. The solvers CPLEX and Gurobi show the lowest computational time to find a solution.eng
dc.format.extent9 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengeng
dc.titleAssessment of a multiperiod optimal power flow for power system operationeng
dc.typeArtículo de revistaspa
dcterms.audienceComunidad universitaria en generalspa
dc.subject.armarcRecursos energéticos renovablesspa
dc.subject.armarcEnergía eólicaspa
dc.subject.armarcRenewable energy sourceseng
dc.subject.armarcWind powereng
dc.publisher.placeNápoles, Italiaspa
dc.relation.citationendpage492spa
dc.relation.citationissueNúmero 6spa
dc.relation.citationstartpage484spa
dc.relation.citationvolumeVolumen 15spa
dc.relation.citesMoreno-Chuquen, Ricardo y Cantillo-Luna, Sergio. Assessment of a multiperiod optimal power flow for power system operation. En: International Review of Electrical Engineering (I.R.E.E.), volumen 15, número 6 (Noviembre-Diciembre, 2020), páginas 484-492. ISSN 1827- 6660spa
dc.relation.ispartofjournalInternational Review of Electrical Engineering (I.R.E.E.)eng
dc.relation.references[1] Al Hasibi, R., Hadi, S., Sarjiya, S., Multi-Objective Optimization of Integrated Power System Expansion Planning with Renewable Energy-Based Distributed Generation, (2019) International Review of Electrical Engineering (IREE), 14 (1), pp. 19-31. doi: https://doi.org/10.15866/iree.v14i1.16082spa
dc.relation.references[2] Sangwato, S., Oonsivilai, A., Optimal Power Flow with Interline Power Flow Controller Using Hybrid Genetic Algorithm, (2015) International Review of Electrical Engineering (IREE), 10 (6), pp. 727-733. doi: https://doi.org/10.15866/iree.v10i6.7568spa
dc.relation.references[3] Lakdja, F., Abdeslam, D., Gherbi, F., Optimal Location of Thyristor-Controlled Series Compensator for Optimal Power Flows, (2013) International Review on Modelling and Simulations (IREMOS), 6 (2), pp. 465-472spa
dc.relation.references[4] R.A. Jabr. Adjustable robust OPF with renewable energy sources. IEEE Trans Power Syst, vol. 28 n. 4, 2013, pp 4742–4751.spa
dc.relation.references[5] A. Castillo, X. Jiang, D.F. Gayme. Lossy DCOPF for optimizing congested grids with renewable energy and storage. Proceedings of the American Control Conference. Institute of Electrical and Electronics Engineers Inc. June 4-6, 2014, Portland, OR, United States.spa
dc.relation.references[6] T. Geetha, V. Jayashankar. Generation dispatch with storage and renewables under availability-based tariff. IEEE Region 10 Annual International Conference TENCON. 2008.spa
dc.relation.references[7] Gourma, A., Berdai, A., Reddak, M., Tytiuk, V., Reliability and Optimization Strategy in an Interconnected Network at a Wind Farm, (2018) International Review on Modelling and Simulations (IREMOS), 11 (2), pp. 76-83. doi: https://doi.org/10.15866/iremos.v11i2.13596spa
dc.relation.references[8] Varanasi, J., Tripathi, M., Performance Comparison of Generalized Regression Network, Radial Basis Function Network and Support Vector Regression for Wind Power Forecasting, (2019) International Review on Modelling and Simulations (IREMOS), 12 (1), pp. 16-23. doi: https://doi.org/10.15866/iremos.v12i1.15781spa
dc.relation.references[9] Srivastava, A., Bajpai, R., An Efficient Maximum Power Extraction Algorithm for Wind Energy Conversion System Using Model Predictive Control, (2019) International Journal on Energy Conversion (IRECON), 7 (3), pp. 93-107. doi: https://doi.org/10.15866/irecon.v7i3.17403spa
dc.relation.references[10] A. Castillo, D. F. Gayme. Evaluating the effects of real power losses in optimal power flow-based storage integration. IEEE Transactions on Control of Network Systems, vol 5, n. 3. Sep 2018, pp 1132–1145.spa
dc.relation.references[11] Sharifzadeh H, Amjady N, Zareipour H. Multi-period stochastic security-constrained OPF considering the uncertainty sources of wind power, load demand and equipment unavailability. Electric Power Systems Research, vol. 146, n. 5. May 2017, pp. 33–42.spa
dc.relation.references[12] Boonchuay, K. Tomsovic, F. Li, W. Ongsakul. Robust optimization-based DC optimal power flow for managing wind generation uncertainty. AIP Conference Procedings, vol 1499, n. 1. May 2014, pp 31–35.spa
dc.relation.references[13] Rahmat Azami MSJ and GH. Economic load Dispatch and DCOptimal Power Flow Problem-PSO versus LR. International Journal of Multidisciplinary Sciences and Engineering, vol. 2, n. 9. Dec 2011, pp 8–13.spa
dc.relation.references[14] A. Soroudi. Power System Optimization Modeling in GAMS. (Springer International Publishing, 2017).spa
dc.relation.references[15] R. A. Jabr, S. Karaki, J. A. Korbane. Robust Multi-Period OPF with Storage and Renewables. IEEE Transactions on Power Systems, vol. 30 n. 5. Sep 2015, pp. 2790–2799.spa
dc.relation.references[16] B. Eldridge, R. O’Neill, A. Castillo. An Improved Method for the DCOPF with Losses. IEEE Transactions on Power Systems vol. 33, n. 4. July 2018, pp. 3779–3788.spa
dc.relation.references[17] P. Maghouli, A. Soroudi, A. Keane. Robust computational framework for mid-term techno-economical assessment of energy storage. IET Generation, Transmission & Distribution, vol. 10 n. 3. Feb 2016, pp. 822–831.spa
dc.relation.references[18] Hafez, A., AlSadi, S., Nassar, Y., Chaotic Optimization Versus Genetic Algorithm for Optimal Tuning of Static Synchronous Series Compensator Stabilizing Controller, (2019) International Review of Electrical Engineering (IREE), 14 (3), pp. 159-172 doi: https://doi.org/10.15866/iree.v14i3.16163spa
dc.relation.references[19] Mmary, E., Marungsri, B., Multiobjective Optimization of Renewable Distributed Generations in Radial Distribution Networks with Optimal Power Factor, (2018) International Review of Electrical Engineering (IREE), 13 (4), pp. 297-304. doi: https://doi.org/10.15866/iree.v13i4.15069spa
dc.relation.references[20] Adam, K., Miyauchi, H., Optimization of a Photovoltaic Hybrid Energy Storage System Using Energy Storage Peak Shaving, (2019) International Review of Electrical Engineering (IREE), 14 (1), pp. 8-18. doi: https://doi.org/10.15866/iree.v14i1.16162spa
dc.relation.references[21] Oloulade, A., Moukengue, A., Vianou, A., Multi-Criteria Optimization of the Functionning of a Distribution Network in Normal Operating Regime, (2018) International Review of Electrical Engineering (IREE), 13 (4), pp. 290-296. doi: https://doi.org/10.15866/iree.v13i4.14401spa
dc.relation.references[22] Hassoune, A., Khafallah, M., Mesbahi, A., Benaaouinate, L., ouragba, T., Control Strategies of a Smart Topology of EVs Charging Station Based Grid Tied RES-Battery, (2018) International Review of Electrical Engineering (IREE), 13 (5), pp. 385-396. doi: https://doi.org/10.15866/iree.v13i5.15520spa
dc.relation.references[23] Moreno, R. Identification of Topological Vulnerabilities for Power Systems Networks. In 2018 IEEE Power & Energy Society General Meeting (PESGM), pp. 1-5. doi: https://doi.org/10.1109/PESGM.2018.8586143spa
dc.relation.references[24] Moreno-Chuquen, R., Obando-Ceron, J., Network Topological Notions for Power Systems Security Assessment, (2018) International Review of Electrical Engineering (IREE), 13 (3), pp. 237-245. doi: https://doi.org/10.15866/iree.v13i3.14210spa
dc.relation.references[25] Khemmook, P., Khomfoi, S., Transient Stability Improvement Using Coordinated Control of Solar PVs and Solid State Transformers, (2018) International Review of Electrical Engineering (IREE), 13 (6), pp. 486-494. doi: https://doi.org/10.15866/iree.v13i6.15869spa
dc.relation.references[26] Omar, A., Ali, Z., Abdel Aleem, S., Abou-El-Zahab, E., Sharaf, A., A Dynamic Switched Compensation Scheme for GridConnected Wind Energy Systems Using Cuckoo Search Algorithm, (2019) International Journal on Energy Conversion (IRECON), 7 (2), pp. 64-74. doi: https://doi.org/10.15866/irecon.v7i2.16895spa
dc.relation.references[27] Mauledoux, M., Valencia, A., Avilés, O., Genetic Algorithm Optimization for DC Micro Grid Design, a Case of Study, (2017) International Review of Electrical Engineering (IREE), 12 (4), pp. 318-323. doi: https://doi.org/10.15866/iree.v12i4.11544spa
dc.relation.references[28] Jabri, M., Aloui, H., Genetic Lagrangian Relaxation Selection Method for the Solution of Unit Commitment Problem, (2019) International Journal on Engineering Applications (IREA), 7 (2), pp. 59-64. doi: https://doi.org/10.15866/irea.v7i2.17022spa
dc.relation.references[29] Prodromidis, G., Tsiaras, E., Coutelieris, F., Autonomous Buildings with Electricity by Renewables, (2018) International Journal on Energy Conversion (IRECON), 6 (5), pp. 153-159. doi: https://doi.org/10.15866/irecon.v6i5.15919spa
dc.relation.references[30] Rizk-Allah, R., Abdel Mageed, H., El-Sehiemy, R., Abdel Aleem, S., El Shahat, A., A New Sine Cosine Optimization Algorithm for Solving Combined Non-Convex Economic and Emission Power Dispatch Problems, (2017) International Journal on Energy Conversion (IRECON), 5 (6), pp. 180-192. doi: https://doi.org/10.15866/irecon.v5i6.14291spa
dc.relation.references[31] Syahputra, R., Robandi, I., Ashari, M., Performance Improvement of Radial Distribution Network with Distributed Generation Integration Using Extended Particle Swarm Optimization Algorithm, (2015) International Review of Electrical Engineering (IREE), 10 (2), pp. 293-304. doi: https://doi.org/10.15866/iree.v10i2.5410spa
dc.relation.references[32] Muthukumar, K., Jayalalitha, S., Ramaswamy, M., PSO Embedded Artificial Bee Colony Algorithm for Optimal Shunt Capacitor Allocation and Sizing in Radial Distribution Networks with Voltage Dependent Load Models, (2015) International Review of Electrical Engineering (IREE), 10 (2), pp. 305-320. doi: https://doi.org/10.15866/iree.v10i2.5481spa
dc.relation.references[33] Moreno, R., Obando, J., Gonzalez, G., An integrated OPF dispatching model with wind power and demand response for day-ahead markets, (2019) International Journal of Electrical and Computer Engineering (IJECE), 4 (4), pp. 2794-2802. doi: http://doi.org/10.11591/ijece.v9i4.pp2794-2802spa
dc.relation.references[34] Wongdet, P., Leeton, U., Marungsri, B., Line Loss Reduction by Optimal Location of Battery Energy Storage System for the Daily Operation in Microgrid with Distributed Generations, (2018) International Journal on Energy Conversion (IRECON), 6 (3), pp. 83-89. doi: https://doi.org/10.15866/irecon.v6i3.15095spa
dc.relation.references[35] Obando, J., Gonzalez, G., Moreno, R., Quantification of operating reserves with high penetration of wind power considering extreme values, (2020) International Journal of Electrical and Computer Engineering (IJECE), 10 (2), pp. 1693-1700. doi: http://doi.org/10.11591/ijece.v10i2.pp1693-1700spa
dc.relation.references[36] J. Yi-Xiong, C. Hao-Zhong, Y. Jian-yong, Z. Li, New discrete method for particle swarm optimization and its application in transmission network expansion planning, Electric Power Systems Research, vol. 77 n. 3-4, 2007, pp. 227-233. doi. http://dx.doi.org/10.1016/j.epsr.2006.02.016spa
dc.relation.references[37] COIN-OR Branch and Cut Interface Julia package. Accessed on Aug. 4, 2019. [Online]. Available: https://github.com/JuliaOpt/Cbc.jlspa
dc.relation.references[38] COIN-OR Linear Programming Interface Julia package. Accessed on Aug. 5, 2019. [Online]. Available: https://github.com/JuliaOpt/Clp.jlspa
dc.relation.references[39] IBM ILOG CPLEX Optimization Studio V12.9.0 documentation. Accessed on Aug. 4, 2019. [Online]. Available: https://www.ibm.com/support/knowledgecenter/SSSA5P_12.9.0/i log.odms.studio.help/Optimization_Studio/topics/COS_home.htmlspa
dc.relation.references[40] The GUROBI Manual. Accessed on August 5, 2019. [Online]. Available: https://www.gurobi.com/documentation/8.1/refman/index.htmlspa
dc.relation.references[41] Julia GNU Linear Programming Kit (GLPK) package. Accessed on August 5, 2019. [Online]. Available: https://github.com/JuliaOpt/GLPK.jlspa
dc.relation.references[42] Julia for Mathematical Optimization (JuMP) package. Accessed on Aug. 4, 2019. [Online]. Available:spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalOptimal Power Floweng
dc.subject.proposalPower systemseng
dc.subject.proposalRenewable energyeng
dc.subject.proposalFlujo de energía óptimospa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTexteng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTCORTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersioneng


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record