Show simple item record

dc.contributor.authorPalacios Duarte, Juan Estebanspa
dc.contributor.otherPosada Contreras, Johnnyspa
dc.coverage.spatialUniversidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundíspa
dc.date.accessioned2020-07-06T16:40:01Zspa
dc.date.available2020-07-06T16:40:01Zspa
dc.date.issued2020-05-15spa
dc.identifier.urihttp://red.uao.edu.co//handle/10614/12386spa
dc.description.abstractEn la actualidad, el alto consumo de energía es una constante preocupación mundial debido al impacto que esto causa sobre el planeta, múltiples soluciones desde los puntos de vista técnico, social y económico han buscado mitigar estos problemas. Una de estas soluciones es la conocida como microrred, la cual integra fuentes de energía renovable mediante interfaces de potencia con el fin de brindar el servicio de energía eléctrica de calidad. El uso de conversores DC/AC en las microrredes es fundamental y por tanto se ha dedicado investigaciones desde las topologías, esquemas de modulación y control. Una de estas técnicas es la conocida como Generadores Síncronos Virtuales o Synchronverter, donde se trabaja el inversor como un generador síncrono. Por tanto, en el siguiente artículo se desarrolla la técnica de Synchronverter y control proporcional resonante para operar inversores en paralelo dentro de una microrred eléctricaspa
dc.description.abstractThe current high energy consumption is a constant global risk due to the impact that this causes on the planet, multiple solutions from the technical, social and economic points of view have sought to mitigate these problems. One of these solutions is known as microgrid, which integrates renewable energy sources through power interfaces in order to provide quality electric power service. The use of DC / AC converters in microgrids is fundamental and therefore has been investigated from the topologies, modulation and control schemes. One of these techniques is known as Virtual Synchronous Generators or Synchronverter, where the inverter is searched for as a synchronous generator. Therefore, in the following article the Synchronverter technique and proportional resonant control is developed to operate inverters in parallel with in an electrical microgrideng
dc.formatapplication/pdfspa
dc.format.extent154 páginasspa
dc.language.isospaeng
dc.publisherUniversidad Autónoma de Occidentespa
dc.rightsDerechos Reservados - Universidad Autónoma de Occidentespa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.sourceinstname:Universidad Autónoma de Occidentespa
dc.sourcereponame:Repositorio Institucional UAOspa
dc.subjectMaestría en Sistemas Energéticosspa
dc.subjectMicrorredesspa
dc.subjectInversorspa
dc.subjectSynchronvertereng
dc.subjectControl proporcional resonantespa
dc.subjectMicrogridseng
dc.subjectInverterseng
dc.titleDiseño e implementación de estrategias de control para inversores de tensión trabajando en paralelo y funcionando como generadores síncronos virtualesspa
dc.typeTrabajo de grado - Maestríaspa
dc.description.notesProyecto de grado (Magister en Sistemas Energéticos)-- Universidad Autónoma de Occidente, 2020spa
dc.publisher.programMaestría en Sistemas Energéticosspa
dc.creator.degreeMagíster en Sistemas Energéticosspa
dc.publisher.departmentDepartamento de Energética y Mecánicaspa
dc.subject.armarcConservación de la energíaspa
dc.subject.armarcRedes eléctricasspa
dc.subject.armarcInversores eléctricosspa
dc.subject.armarcEnergy conservationeng
dc.subject.armarcElectric networkseng
dc.subject.armarcElectric inverterseng
dc.publisher.facultyFacultad de Ingenieríaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Sistemas Energéticosspa
dc.relation.references[1] Toshihisa Funabashi, Integration of Distributed Energy Resources in Power Systems Implementation, Operation, and Control. Nagoya, Japan,2016, p.p 313 consultado en: abril 2019. [en línea] . [2] «Paralleling a synchronverter and a PWM-based converter for supplying a microgrid - IEEE Conference Publication». https://ezproxy.uao.edu.co:2108/document/8126727 (accedido jul. 25, 2019). [3] David Carballo Rojas, «Stability Analysis of a High-Power Microgrid», University of Arkansas. Consultado en: enero 2018 [4] Y. Zhang y H. Ma, «Theoretical and Experimental Investigation of Networked Control for Parallel Operation of Inverters», IEEE Trans. Ind. Electron., vol. 59, n.o 4, pp. 1961-1970, abr. 2012, doi: 10.1109/TIE.2011.2165459. [5] Yang Zhou y C. Ngai-Man Ho, «A review on Microgrid architectures and control methods», may 2016, pp. 3149-3156, doi: 10.1109/IPEMC.2016.7512799. [6] R. M. B. Moritz y A. L. Batschauer, «Capacitor voltage balancing in a 5-L full-bridge flying capacitor inverter», en 2017 Brazilian Power Electronics Conference (COBEP), Juiz de Fora, nov. 2017, pp. 1-6, doi: 10.1109/COBEP.2017.8257234. [7] R. A. Krishna y L. P. Suresh, «A brief review on multi level inverter topologies», en 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT), Nagercoil, India, mar. 2016, pp. 1-6, doi: 10.1109/ICCPCT.2016.7530373. [8] A. Kerem, A. Aksoz, A. Saygin, y E. N. Yilmaz, «Smart grid integration of micro hybrid power system using 6-switched 3-level inverter», abr. 2017, pp. 161- 165, doi: 10.1109/SGCF.2017.7947625. [9] M. M. Biswas, S. Podder, y Md. Z. R. Khan, «Modified H-bridge multilevel inverter for Photovoltaic micro-grid systems», dic. 2016, pp. 377-380, doi: 10.1109/ICECE.2016.7853935. 131 [10] A. Yadav, S. N. Singh, y S. P. Das, «Modular multi-level converter topologies: Present status and key challenges», en 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON), Mathura, oct. 2017, pp. 280-288, doi: 10.1109/UPCON.2017.8251061. [11] A. Sallam, M. E. Nassar, R. A. R. Hamdy, y M. M. A. Salama, «Interlinked hybrid microgrids with fault confining capability using a novel MMC topology», en 2017 IEEE Electrical Power and Energy Conference (EPEC), Saskatoon, SK, oct. 2017, pp. 1-5, doi: 10.1109/EPEC.2017.8286228. [12] E. N. Abildgaard y M. Molinas, «Modelling and Control of the Modular Multilevel Converter (MMC)», Energy Procedia, vol. 20, pp. 227-236, 2012, doi: 10.1016/j.egypro.2012.03.023. [13] Q. Tabart, I. Vechiu, A. Etxeberria, y S. Bacha, «Hybrid Energy Storage System Microgrids Integration for Power Quality Improvement Using Four-Leg Three-Level NPC Inverter and Second-Order Sliding Mode Control», IEEE Trans. Ind. Electron., vol. 65, n.o 1, pp. 424-435, ene. 2018, doi: 10.1109/TIE.2017.2723863. [14] E. H. Miliani, I. Zein, L. Kefsi, y A. Battiston, «Matrix converter topology for distributed energy applications», en 2016 18th European Conference on Power Electronics and Applications (EPE’16 ECCE Europe), Karlsruhe, sep. 2016, pp. 1- 13, doi: 10.1109/EPE.2016.7695688. [15] A. Ammar, H. Y. Kanaan, N. Moubayed, M. Hamouda, y K. Al-Haddad, «A novel hybrid modulation algorithm for the indirect matrix converter topology», en IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, oct. 2017, pp. 6363-6368, doi: 10.1109/IECON.2017.8217108. [16] D. Gregor et al., «Multi-modular matrix converter topology applied to distributed generation systems», en 8th IET International Conference on Power Electronics, Machines and Drives (PEMD 2016), Glasgow, UK, 2016, pp. 6 .-6 ., doi: 10.1049/cp.2016.0208. [17] M. Humayun, M. M. Khan, Z. Weidong, J. Huawei, y M. Ullah, «Modeling of five-level symmetric flying capacitor multilevel inverter for STATCOM application», en 2017 13th International Conference on Emerging Technologies (ICET), Islamabad, dic. 2017, pp. 1-6, doi: 10.1109/ICET.2017.8281660. 132 [18] H. Takahashi, H. Obara, y Y. Fujimoto, «Dead time compensation for three-level flying capacitor inverter with phase shift PWM», en 2018 IEEE 15th International Workshop on Advanced Motion Control (AMC), Tokyo, mar. 2018, pp. 229-233, doi: 10.1109/AMC.2019.8371093. [19] N. R. Sreeprathab y X. F. Joseph, «A survey on Z-source inverter», en 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), Kanyakumari District, India, jul. 2014, pp. 1406-1410, doi: 10.1109/ICCICCT.2014.6993182. [20] A. R. Pawar y S. A. Deokar, «Design of embedded EZ-source inverter for the integration of renewable energy sources in smart grid», may 2015, pp. 49-54, doi: 10.1109/IIC.2015.7150590. [21] Amirnaser Yazdani y Reza Iravani, Voltage-Sourced Converters in Power Systems, Wiley. . [22] Q.-C. Zhong y Tomas Hornik, CONTROL OF POWER INVERTERS IN RENEWABLE ENERGY AND SMART GRID INTEGRATION, Willey. University of Sheffield. p.p 416. Consultado en: Marzo 2018. [en línea]. [23] Kazmierkowski Mariam, F. Blaabjerg Frede, y Krishna Ramu, Control In Power Electronics. Academic Press. p.p 568. Consultado Septiembre 2019. [en línea] [24] S. Golestan, M. Monfared, J. M. Guerrero, y M. Joorabian, «A D-Q synchronous frame controller for single-phase inverters», en 2011 2nd Power Electronics, Drive Systems and Technologies Conference, Tehran, Iran, feb. 2011, pp. 317-323, doi: 10.1109/PEDSTC.2011.5742439. [25] A. Bozicek, B. Blazic, y I. Papic, «Mathematical modeling and current control of a voltage source converter», en 2008 43rd International Universities Power Engineering Conference, Padova, sep. 2008, pp. 1-5, doi: 10.1109/UPEC.2008.4651664. [26] Luke Dale Watson, «Inverter design and analysis using multiple reference frame theory», Missouri University of Science and Technology, Missouri, 2013. 133 [27] D. E. Olivares et al., «Trends in Microgrid Control», IEEE Trans. Smart Grid, vol. 5, n.o 4, pp. 1905-1919, jul. 2014, doi: 10.1109/TSG.2013.2295514. [28] E. Barklund, N. Pogaku, M. Prodanovic, C. Hernandez-Aramburo, y T. C. Green, «Energy Management in Autonomous Microgrid Using Stability-Constrained Droop Control of Inverters», IEEE Trans. Power Electron., vol. 23, n.o 5, pp. 2346- 2352, sep. 2008, doi: 10.1109/TPEL.2008.2001910. [29] J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna, y M. Castilla, «Hierarchical Control of Droop-Controlled AC and DC Microgrids—A General Approach Toward Standardization», IEEE Trans. Ind. Electron., vol. 58, n.o 1, pp. 158-172, ene. 2011, doi: 10.1109/TIE.2010.2066534. [30] Md. A. Rahman y Md. R. Islam, «Different control schemes of entire microgrid: A brief overview», sep. 2016, pp. 1-6, doi: 10.1109/CEEICT.2016.7873059. [31] R. Teodorescu, F. Blaabjerg, M. Liserre, y P. C. Loh, «Proportionalresonant controllers and filters for grid-connected voltage-source converters», IEE Proc. - Electr. Power Appl., vol. 153, n.o 5, p. 750, 2006, doi: 10.1049/ipepa: 20060008. [32] F. A. Mohamed y H. N. Koivo, «Power management strategy for solving power dispatch problems in MicroGrid for residential applications», en 2010 IEEE International Energy Conference, Manama, Bahrain, dic. 2010, pp. 746-751, doi: 10.1109/ENERGYCON.2010.5771780. [33] S. S. Kannan, K. Vijayakumar, y R. Ramanujam, «Power electronic interface (PEI) based power flow control for micro grid environment - a review», en 2016 International Conference on Computation of Power, Energy Information and Commuincation (ICCPEIC), Melmaruvathur,Chennai, India, abr. 2016, pp. 376-380, doi: 10.1109/ICCPEIC.2016.7557260. [34] J. Rocabert, A. Luna, F. Blaabjerg, y P. Rodríguez, «Control of Power Converters in AC Microgrids», IEEE Trans. Power Electron., vol. 27, n.o 11, pp. 4734-4749, nov. 2012, doi: 10.1109/TPEL.2012.2199334. [35] O. Deblecker, C. Stevanoni, y F. Vallee, «Cooperative control of multifunctional inverters for renewable energy integration and power quality 134 compensation in micro-grids», jun. 2016, pp. 1051-1058, doi: 10.1109/SPEEDAM.2016.7525900. [36] J. M. Guerrero, N. Berbel, J. Matas, L. G. de Vicuna, y J. Miret, «Decentralized Control for Parallel Operation of Distributed Generation Inverters in Microgrids Using Resistive Output Impedance», en IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics, Paris, France, nov. 2006, pp. 5149-5154, doi: 10.1109/IECON.2006.347859. [37] Yun Wei Li y Ching-Nan Kao, «An Accurate Power Control Strategy for Power-Electronics-Interfaced Distributed Generation Units Operating in a Low- Voltage Multibus Microgrid», IEEE Trans. Power Electron., vol. 24, n.o 12, pp. 2977- 2988, dic. 2009, doi: 10.1109/TPEL.2009.2022828. [38] T. Hornik y Q.-C. Zhong, «H∞ repetitive current-voltage control of inverters in microgrids», en IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ, USA, nov. 2010, pp. 3000-3005, doi: 10.1109/IECON.2010.5674953. [39] G. Weiss, Q.-C. Zhong, T. C. Green, y J. Liang, «>tex<$H^infty$>/tex<Repetitive Control of DC-AC Converters in Microgrids», IEEE Trans. Power Electron., vol. 19, n.o 1, pp. 219-230, ene. 2004, doi: 10.1109/TPEL.2003.820561. [40] C. Blanco, F. Tardelli, D. Reigosa, P. Zanchetta, y F. Briz, «Design of a Cooperative Voltage Harmonic Compensation Strategy for Islanded Microgrids Combining Virtual Admittance and Repetitive Controller», IEEE Trans. Ind. Appl., vol. 55, n.o 1, pp. 680-688, ene. 2019, doi: 10.1109/TIA.2018.2868691. [41] H. M. A. Antunes, S. M. Silva, D. I. Brandao, R. V. Ferreira, y B. de J. C. Filho, «Analysis of a grid-forming converter based on repetitive control in centralized AC microgrid», en 2017 IEEE 8th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Florianopolis, Brazil, abr. 2017, pp. 1-8, doi: 10.1109/PEDG.2017.7972462. [42] A. Timbus, M. Liserre, R. Teodorescu, P. Rodriguez, y F. Blaabjerg, «Evaluation of Current Controllers for Distributed Power Generation Systems», IEEE Trans. Power Electron., vol. 24, n.o 3, pp. 654-664, mar. 2009, doi: 10.1109/TPEL.2009.2012527. 135 [43] César Leonardo Trujillo Rodríguez, David Velasco de la Fuente, Emilio Figueres Amorós, Gabriel Garcerá Sanfeliú, y Javier Guacaneme Moreno, «Diseño, modelado e implementación de inversor conectado a la red eléctrica a partir de fuentes renovables», Tecnura, jun. 2012. [44] Guoqiao Shen, Xuancai Zhu, Jun Zhang, y Dehong Xu, «A New Feedback Method for PR Current Control of LCL-Filter-Based Grid-Connected Inverter», IEEE Trans. Ind. Electron., vol. 57, n.o 6, pp. 2033-2041, jun. 2010, doi: 10.1109/TIE.2010.2040552. [45] R. Teodorescu y F. Blaabjerg, «Proportional-Resonant Controllers. A New Breed of Controllers Suitable for Grid-Connected Voltage-Source Converters», 2004. [46] Kyungbae Lim, Jaeho Choi, Juyoung Jang, Junghum Lee, y Jaesig Kim, «P+ multiple resonant control for output voltage regulation of microgrid with unbalanced and nonlinear loads», en 2014 International Power Electronics Conference (IPEC-Hiroshima 2014 - ECCE ASIA), Hiroshima, Japan, may 2014, pp. 2656-2662, doi: 10.1109/IPEC.2014.6869965. [47] T. V. Kumar, V. Thomas, S. Kumaravel, y S. Ashok, «Performance of virtual synchronous machine in autonomous mode of operation», en 2018 5th International Conference on Renewable Energy: Generation and Applications (ICREGA), Al Ain, feb. 2018, pp. 310-314, doi: 10.1109/ICREGA.2018.8337612. [48] Xiaodong Liang y C. A. B. Karim, «Virtual synchronous machine method in renewable energy integration», en 2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Xi’an, China, oct. 2016, pp. 364-368, doi: 10.1109/APPEEC.2016.7779528. [49] Y. Chen, R. Hesse, D. Turschner, y H.-P. Beck, «Investigation of the Virtual Synchronous Machine in the island mode», en 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), Berlin, Germany, oct. 2012, pp. 1-6, doi: 10.1109/ISGTEurope.2012.6465648. [50] Q.-C. Zhong, «Virtual Synchronous Machines: A unified interface for grid integration», IEEE Power Electron. Mag., vol. 3, n.o 4, pp. 18-27, dic. 2016, doi: 10.1109/MPEL.2016.2614906. 136 [51] H. Bevrani, T. Ise, y Y. Miura, «Virtual synchronous generators: A survey and new perspectives», Int. J. Electr. Power Energy Syst., vol. 54, pp. 244-254, ene. 2014, doi: 10.1016/j.ijepes.2013.07.009. [52] D. Chen, Y. Xu, y A. Q. Huang, «Integration of DC Microgrids as Virtual Synchronous Machines Into the AC Grid», IEEE Trans. Ind. Electron., vol. 64, n.o 9, pp. 7455-7466, sep. 2017, doi: 10.1109/TIE.2017.2674621. [53] M. Ashabani, «Synchronous converter and synchronous-VSC- state of art of universal control strategies for smart grid integration», en 2014 Smart Grid Conference (SGC), Tehran, dic. 2014, pp. 1-8, doi: 10.1109/SGC.2014.7090877. [54] Q.-C. Zhong y G. Weiss, «Synchronverters: Inverters That Mimic Synchronous Generators», IEEE Trans. Ind. Electron., vol. 58, n.o 4, pp. 1259-1267, abr. 2011, doi: 10.1109/TIE.2010.2048839. [55] Jin-Song Meng et al., «An Improved Synchronverter Model and its Dynamic Behaviour Comparison with Synchronous Generator», en 2nd IET Renewable Power Generation Conference (RPG 2013), Beijing, China, 2013, pp. 4.13-4.13, doi: 10.1049/cp.2013.1879. [56] R. V. Ferreira, S. M. Silva, D. I. Brandao, y H. M. A. Antunes, «Singlephase synchronverter for residential PV power systems», en 2016 17th International Conference on Harmonics and Quality of Power (ICHQP), Belo Horizonte, Brazil, oct. 2016, pp. 861-866, doi: 10.1109/ICHQP.2016.7783378. [57] D. Pullaguram, S. Achary Buragappu, S. Mishra, y D. Ramasubramanian, «Single-phase synchronverter for a grid-connected roof top photovoltaic system», IET Renew. Power Gener., vol. 10, n.o 8, pp. 1187-1194, sep. 2016, doi: 10.1049/ietrpg. 2015.0224. [58] Qing-Chang Zhong, Phi-Long Nguyen, Zhenyu Ma, y Wanxing Sheng, «Self-Synchronized Synchronverters: Inverters Without a Dedicated Synchronization Unit», IEEE Trans. Power Electron., vol. 29, n.o 2, pp. 617-630, feb. 2014, doi: 10.1109/TPEL.2013.2258684. [59] A. R. de Castro J. Caicedo y M. A. B. França, «Resonant harmonic compensation for synchronverter, integrating wind and photovoltaic power generation into an electrical grid, case study: Nonlinear and unbalanced load - IEEE 137 Conference Publication». https://ezproxy.uao.edu.co:2108/document/8257275 (accedido jul. 26, 2019). [60] Q.-C. Zhong, Z. Ma, W.-L. Ming, y G. C. Konstantopoulos, «Grid-friendly wind power systems based on the synchronverter technology», Energy Convers. Manag., vol. 89, pp. 719-726, ene. 2015, doi: 10.1016/j.enconman.2014.10.027. [61] M. Oñate, J. Posada, J. López, J. Quintero, y M. Aredes, «Control of a back-to-back converter as a power transfer system using synchronverter approach», IET Gener. Transm. Distrib., vol. 12, n.o 9, pp. 1998-2005, may 2018, doi: 10.1049/iet-gtd.2017.0093. [62] B. W. Franca, A. R. de Castro, y M. Aredes, «Wind and photovoltaic power generation integrated to power grid through dc link and synchronverter», nov. 2015, pp. 1-6, doi: 10.1109/COBEP.2015.7420216. [63] C.-T. Lee, C.-C. Chu, y P.-T. Cheng, «A new droop control method for the autonomous operation of distributed energy resource interface converters», en 2010 IEEE Energy Conversion Congress and Exposition, Atlanta, GA, sep. 2010, pp. 702- 709, doi: 10.1109/ECCE.2010.5617936. [64] K. De Brabandere, B. Bolsens, J. Van den Keybus, A. Woyte, J. Driesen, y R. Belmans, «A Voltage and Frequency Droop Control Method for Parallel Inverters», IEEE Trans. Power Electron., vol. 22, n.o 4, pp. 1107-1115, jul. 2007, doi: 10.1109/TPEL.2007.900456. [65] Q.-C. Zhong, «Robust Droop Controller for Accurate Proportional Load Sharing Among Inverters Operated in Parallel», IEEE Trans. Ind. Electron., vol. 60, n.o 4, pp. 1281-1290, abr. 2013, doi: 10.1109/TIE.2011.2146221. [66] J. M. Guerrero, L. GarciadeVicuna, J. Matas, M. Castilla, y J. Miret, «Output Impedance Design of Parallel-Connected UPS Inverters With Wireless Load-Sharing Control», IEEE Trans. Ind. Electron., vol. 52, n.o 4, pp. 1126-1135, ago. 2005, doi: 10.1109/TIE.2005.851634. [67] Q.-C. Zhong y D. Boroyevich, «A droop controller is intrinsically a phaselocked loop», en IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, nov. 2013, pp. 5916-5921, doi: 10.1109/IECON.2013.6700105. 138 [68] K. T. Tan, X. Y. Peng, P. L. So, Y. C. Chu, y M. Z. Q. Chen, «Centralized Control for Parallel Operation of Distributed Generation Inverters in Microgrids», IEEE Trans. Smart Grid, vol. 3, n.o 4, pp. 1977-1987, dic. 2012, doi: 10.1109/TSG.2012.2205952. [69] S. Sawano, F. Yoneda, A. Okita, M. Makino, y J. Itoh, «Decentralized voltage restoration method for droop controlled parallel operation inverters in AC microgric», en 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, USA, mar. 2017, pp. 1304-1309, doi: 10.1109/APEC.2017.7930864. [70] P. Sarvghadi y M. Monfared, «Load sharing control of parallel inverters with uncertainty in the output filter impedances for islanding operation of AC microgrid », en 2017 Conference on Electrical Power Distribution Networks Conference (EPDC), Semnan, Iran, abr. 2017, pp. 55-61, doi: 10.1109/EPDC.2017.8012741. [71] M. Baranwal, A. Askarian, y S. M. Salapaka, «A decentralized scalable control architecture for islanded operation of parallel DC/AC inverters with prescribed power sharing», en 2017 American Control Conference (ACC), Seattle, WA, USA, may 2017, pp. 1419-1424, doi: 10.23919/ACC.2017.7963152. [72] S. Sen, K. Yenduri, y P. Sensarma, «Step-by-step design and control of LCL filter based three phase grid-connected inverter», en 2014 IEEE International Conference on Industrial Technology (ICIT), Busan, South Korea, feb. 2014, pp. 503-508, doi: 10.1109/ICIT.2014.6894991. [73] M. Liserre, F. Blaabjerg, y S. Hansen, «Design and Control of an LCLFilter- Based Three-Phase Active Rectifier», IEEE Trans. Ind. Appl., vol. 41, n.o 5, pp. 1281-1291, sep. 2005, doi: 10.1109/TIA.2005.853373. [74] R. Peña-Alzola, M. Liserre, F. Blaabjerg, R. Sebastián, J. Dannehl, y F. W. Fuchs, «Analysis of the Passive Damping Losses in LCL-Filter-Based Grid Converters», IEEE Trans. Power Electron., vol. 28, n.o 6, pp. 2642-2646, jun. 2013, doi: 10.1109/TPEL.2012.2222931. [75] A. Sangwongwanich, A. Abdelhakim, Y. Yang, y K. Zhou, «Control of Single-Phase and Three-Phase DC/AC Converters», en Control of Power Electronic Converters and Systems, Elsevier, 2018, pp. 153-173. 139 [76] Janeth Alcalá, «Estudio de convertidores Back-to-Back», Universidad Autónoma de San Luis Potosí, San Luis Potosí, 2012. Consultado el: 15 de mayo 2019 [77] Ramón Gallego, Antonio Escobar, Mauricio Granada, Flujo de carga en sistemas de transmisión - Modelamiento y análisis, 1.a ed. Pereira, Colombia: Universidad Tecnológica de Pereira, 2016. Consultado el: 5 de Abril de 2018.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTexteng
dc.type.driverinfo:eu-repo/semantics/masterThesiseng
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersioneng


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Derechos Reservados - Universidad Autónoma de Occidente
Except where otherwise noted, this item's license is described as Derechos Reservados - Universidad Autónoma de Occidente