Show simple item record

dc.contributor.authorPardo Flórez, Luz Marinaspa
dc.contributor.authorSalcedo Mendoza, Jairo Gspa
dc.contributor.authorGalán López, Jorge Enriquespa
dc.coverage.spatialUniversidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundíspa
dc.identifier.citationPardo Flórez, Luz Marina; Salcedo Mendoza, Jairo G.; Galán López, Jorge Enrique. Hidrólisis enzimática de residuos de la cosecha de caña de azúcar. En: Revista Colombiana de Biotecnología. Volumen 14, número 1, (2012); páginas 171-181spa
dc.descriptionEn esta investigación, se hidrolizó un sustrato deslignificado proveniente de residuos de la cosecha caña de azúcar (hojas y cogollos) usando un preparado enzimático con 27.53 unidades de papel filtro (FPU), obtenido a partir de enzimas comerciales. La hidrólisis se llevó a cabo a un pH de 4.2 y una temperatura de 50 oC. Fueron analizados modelos de inhibición por sustrato, glucosa e inhibición total por producto. Los resultados mostraron que los modelos que mejor se ajustan a los datos experimentales, son los modelos de inhibición competitiva por glucosa, con una constante de Michaelis (Km) de 20.37 g/L, velocidad máxima (Vmax) 39 g/L h y una constante de inhibición (ki) de 0.442. En el caso que las relaciones enzima – Sustrato (E/S) sean mayores de 0.5, se puede aplicar el modelo cinético de Michaelis-Mentenspa
dc.description.abstractIn this research, a delignified substrate from crops residues sugar cane residues (leaves and top cane) was hydrolyzed using an enzyme preparation with 27.53 FPU. This enzyme was obtained from trade. Hydrolysis was carried out to pH of 4.2 and a temperature of 50 oC. Models of inhibition models substrate, glucose and total inhibition product was analyzed. The results showed that models that best fit the data experimental was the models competitive glucose inhibition (Km= 20.37, Vmax=39 and ki= 0.442). In the event that E/S is above 0.5, can applied kinetic models of Michaelis – Menteneng
dc.format.extent171-181 páginasspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.relationRevista Colombiana de Biotecnología. Volumen 14, número 1, (2012); páginas 171-181spa
dc.rightsDerechos Reservados - Universidad Autónoma de Occidentespa
dc.sourceinstname:Universidad Autónoma de Occidentespa
dc.sourcereponame:Repositorio Institucional UAOspa
dc.subjectModelos cinéticosspa
dc.subjectHojas y cogollosspa
dc.subjectCoctel de enzimasspa
dc.subjectKinetic modelseng
dc.subjectLeaves and tops caneeng
dc.subjectEnzyme cocktaileng
dc.titleHidrólisis enzimática de residuos de la cosecha de caña de azúcarspa
dc.title.alternativeHydrolysis Enzymatic of crop residues sugar caneeng
dc.typeArtículo de revistaspa
dc.relation.referencesAdsula, M.G. Ghuleb, J. E. Shaikhb, H., Singhb, R., Bastawdea, KB., Gokhalea, DV, and y Varma AJ. Enzymatic hydrolysis of delignified bagasse polysaccharides, Carbohydrate Polymers., 62, 6 –10, 2005spa
dc.relation.referencesAlberty, R. Determination of kinetic parameters of enzyme – catalyzed reactions with a minimum number of velocity measurements, Journal of theoretical Biology., 254, 156-163, 2008spa
dc.relation.referencesAlves, L., Gurgela, V., Marabezia, K., Ramosa, L.A., Da Silva Curveloa, A.P. Characterization of depolymerized residues from extremely low acid hydrolysis (ELA) of sugarcane bagasse cellulose: Effects of degree of polymerization, crystallinity and crystallite size on thermal decomposition. Industrial Crops and Products 36, 560–571, 2012spa
dc.relation.referencesAlmeida, JS. Predictive non- linear modeling of complex data by artificial neural networks, Analytical biotechnology., 13, 72 -76, 2002spa
dc.relation.referencesAnder, P. and Ericksson, KE. Selective Degradation of Wood Components by White-Rot Fungi, physiol plant., 41, 239-248, 1977spa
dc.relation.referencesAsenjo, J. Maximazing the formation of glucose in the enzymatic hydrolysis of insoluble cellulose, Biothecnol Bioeng., 25, 3150-85, 1983spa
dc.relation.referencesAtalla, RH. And Vanderlhart, DL. Native cellulose a composite of two distint crystalline forms, Science., 223, 283 – 285, 1984spa
dc.relation.referencesBailey, M., Biely, P. And Pountanen, K. Interlaboratory testig of methods for assay of xylanase activity, Journal of Biotechnology., 23, 257 – 270, 1992spa
dc.relation.referencesBagga, P., Sandhu, D. and Sharma, S. Purification and characterization of cellulolytic enzymes produced by Aspergillus nidulans, Journal of Applied Bacteriology., 68, 61-68, 1990spa
dc.relation.referencesaş, D. Ceyda Dudak, F. and Boyac, IH. Modeling and optimization III: Reaction rate estimation using artificial neural network (ANN) without a kinetic model., Journal of Food Engineering., Vol 79, 622-628, 2007spa
dc.relation.referencesBennet, A. Role of cell wall hydrolases in fruit ripening: Annual Review Plant physiology, Plant Mol. Bio.l, 42, 675-703, 1991spa
dc.relation.referencesBioinformatics Resourse Portal, 2010, Herramienta Expasy, available http\ www. Expasy.Org [citado 2010]spa
dc.relation.referencesBlumenkrantz, N. New methods for quantitative determination of uronic, Anal Biochem., 54, 484 – 489, 1973spa
dc.relation.referencesCara, C. Moya, M. Ballesteros, I. Negro, MJ. Gonzalez, A. And Ruiz, E. Influence of solid loading on enzymatic hydrolysis of steam exploded or liquid hot water pretreated olive tree biomass, Process Biochem., 42, 1003-1009, 2007spa
dc.relation.referencesChao, T. And Talalay, P. A simple generalized equation for the analysis of multiple inhibitions of michaelis-menten kinetic systems, The journal of biological chemistry., 252, 6438-6442, 1997spa
dc.relation.referencesDuarte, A, Introducción a la Ingeniería Bioquímica, Departamento de ingeniería Química, Universidad Nacional, Colombia, 1995spa
dc.relation.referencesFengel, D. and Wenwger, G. Wood: Chemistry, ultraestrucrure reaction, De Gruyter. Berlin, 300-329, 1984spa
dc.relation.referencesFu liu, C. Ren, J. Xu, F. Jui Liu, J. Jxia Sun, J. And Sun, R. Isolation and Characterization of Cellulose Obtained from Ultrasonic Irradiated Sugarcane Bagasse, J. Agric. Food Chem; 54, 5742-5748, 2006spa
dc.relation.referencesGalbe, M. And Zacchi, G. A review of the production of ethanol from softwod, Appl. Microbial biotechnol; 59,.618- 628, 2002spa
dc.relation.referencesGianfreda, L. Xu, F. And Bollag, J. Laccases: A Useful Group of Oxidoreductive Enzymes, Bioremediation Journal; vol 3, 1-26, 1999spa
dc.relation.referencesHeitz, M. Carrasco. F, Rubio, M. Brown, A. Chornet, E. And Overend, R. Physico-chemical characterization of lignocellulosic substrates pretreated via autohydrolysis: an application to tropical woods, Biomass; 13, 255-273, 1987spa
dc.relation.referencesHodge, DB. Karim, MN. Schell, DJ. McMillan, JD. Soluble and insoluble solids contributions to high-solids enzymatic hydrolysis of lignocelluloses, Bioresour Technol; 99,8940-8948, 2008spa
dc.relation.referencesJurado, M. Prieto, A. Martínez-Alcalá, A. And Martínez, MJ. Laccase detoxification of steam-exploded wheat straw for second generation Bioethanol, Bioresource Technology; 100, 6378 -6384, 2009spa
dc.relation.referencesKuwahara, M. Glenn, J, Morgan, M. And Gold, M. Separation and characterization of two extracellular H2O2 -dependent oxidases from lignolytic cultures of Phanerochaete chrysosporium, FEBS Lett; 169, 247–50, 1984spa
dc.relation.referencesLee, H, Fan, L.. Kinetic studies of enzymatic hydrolysis of insoluble cellulose: analysis of the initial rates, Biotechnology and Bioingineering; Vol XXIV, .2383 -2406, 1982spa
dc.relation.referencesMarín, R. Caracterización y expresión recombinante de una celulasa de origen antartido,[ trabajo de grado para optar título de ingeniero civil en biotecnología], Facultad de Ciencias Físicas, Universidad de Chile, 2007spa
dc.relation.referencesMegazyme International Ireland Limited. Assay 1-4-β xilanase using Azo Xilan (OAT), SAXYO, available: http\: www., [citado diciembre 2009]spa
dc.relation.referencesMovagarnejad, K. Sohrabi, M. Kaghazchi, T. And Vahabzadeh, F. A Model for the rate of enzymatic hydrolysis of cellulose in heterogeneous solid – liquid systems, Biochemical Engineering Journal; 4, 197-206, 2000spa
dc.relation.referencesOrsi, B. And Tipton, F. Enzyme kinetics and mechanism part A. Initial rate and inhibitor, Methods Enzymoly; 63, 159-183, 1979spa
dc.relation.referencesPhilippidis, G. and Smith, T. Limiting factors in the simultaneous saccharification and fermentation process for conversión of cellulosic biomass to fuel ethanol, Appl. Biochem and Biotech; 51/52, 117- 124, 1995spa
dc.relation.referencesRanby, B. G. The Mercerization of cellulose. Acta Chemica Scandinavica, 6, 116–127,
dc.relation.referencesRosgaard, L. Andric, P. Dam-Johansen, K. Pedersen, S. Meyer, A. Effects of substrate loading on enzymatic hydrolysis and viscosity of pretreated barley straw, Appl Biochem Biotechnol; 143,27- 40, 2007spa
dc.relation.referencesSaha, B. Item, L. Cotta, M. And Wu, Y. Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol, Biotechnology Progress; 21, 816–822, 2005spa
dc.relation.referencesSaparrat, M. Mocchiutti, P. And Liggieri, C. Ligninolytic enzyme ability and potential biotechnology applications of the white-rot fungus Grammothele subargentea LPSC no. 436 strain, Process Biochemistry; 43, 368–375, 2008spa
dc.relation.referencesSørensen, I. Pedersen, S. Meyer, A. Optimization of reaction conditions for enzymatic viscosity reduction and hydrolysis of wheat arabinoxylan in an industrial ethanol fermentation residue, Biotechnol Prog; 22,505-513,
dc.relation.referencesVan Zyl, C. Prior, B. And Du Preez, J. Acetic acid inhibition of D-xylose fermentation by Pichia stipitis, Enzyme and Microbial Technology; 13, 82-86, 1991spa
dc.relation.referencesWheals, A. Basso, L. And Álvarez, A. Fuel ethanol after 25 years, Trend Biotecnol; 17, 482-489, 1999spa
dc.relation.referencesWyman, C. Handbook on Bioethanol: production and utilization. Washinnton, DC, Taylor & francis, 1996spa
dc.relation.referencesZhang, Y. And Lynd, L. Quantification of cell and cellulase mass concentrations during anaerobic cellulose fermentation: Development of an enzyme-linked immunosorbent assay-based method with application to Clostridium thermocellum batch cultures. Analytical Chemistry, 75, 219-227, 2003spa
dc.relation.referencesZhang, S. Wolfgang, D. And Wilson, D. Substrate Heterogeneity Causes the Nonlinear Kinetics of Insoluble Cellulose Hydrolysis, Biotechnology and Bioengineering; vol. 66, no. 1, 1998spa
dc.relation.referencesZykwisnka, F. Ralet, M. Garnier, C. And Thibault, F. Evidence for vitro binding of pectin side chains to cellulose, Plant physiol; 139, 397- 407, 2005spa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Derechos Reservados - Universidad Autónoma de Occidente
Except where otherwise noted, this item's license is described as Derechos Reservados - Universidad Autónoma de Occidente