Show simple item record

dc.contributor.authorRamírez Duque, José Luisspa
dc.contributor.authorRamos Lucumi, Mabel Angélicaspa
dc.coverage.spatialUniversidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundíspa
dc.date.accessioned2020-02-13T21:55:13Zspa
dc.date.available2020-02-13T21:55:13Zspa
dc.date.issued2011-11spa
dc.identifier.citationRamírez Duque, José Luis; Ramos Lucumi, Mabel Angélica. Hydrodynamic computational evaluation in solar tubular photobioreactors bends with different cross sections. En: CT&F Ciencia, Tecnología y Futuro. volumen 4, número 4, (diciembre, 2011); páginas 59-72eng
dc.identifier.issn0122-5383spa
dc.identifier.urihttp://red.uao.edu.co//handle/10614/11889spa
dc.description.abstractEn este artículo se analizó el comportamiento hidrodinámico de un flujo monofásico en varios colectores solares, con diferentes perfiles transversales (circular, octagonal, hexagonal y cuadrado), de igual diámetro hidráulico y perfil longitudinal. Se evaluó el flujo secundario, las caídas de presión y el esfuerzo cortante del fluido, ya que de estos depende la eficiencia fotosintética y la vitalidad microalgal. Los anteriores parámetros se revisaron para seis diferentes velocidades de entrada del cultivo en el colector (entre 0,25 m/s a 0,5 m/s) enfatizándose en la región de los codos, donde se presenta una mayor velocidad y agitación en el colector solar cuadrado, contrario a lo que sucede con el circular. A pesar de esto, el colector solar circular continúa siendo la mejor opción en la etapa de implementación industrial. Sin embargo, el esfuerzo cortante que se genera en el cultivo, a medida que atraviesa el codo de 180° del colector solar, afecta el crecimiento de las microalgas, según lo estipulado en la literatura relacionada.spa
dc.description.abstractIn this article, the hydrodynamic behavior of a single-phase flow in various solar collectors with different cross sections (circular, octagonal, hexagonal and square), with same hydraulic diameter and longitudinal profile was analyzed. Secondary flow, pressure drop and shear stress were evaluated, because the photosynthetic efficiency and microalgae endurance depend on these properties. These parameters were reviewed at six different culture inlet rates in the collector (from 0,25 m/s to 0,5 m/s), emphasizing in the bends regions. A higher speed and agitation was pre-sent in the square solar collector, contrary to what happened to the circular one. Despite this, the circular solar collector remains the best option for the industrial implementation phase. However, the shear stress generated in the culture -as it passes through the 180° bend of the solar collector- affects the microalgae growth, as stated in the literatureeng
dc.formatapplication/pdfspa
dc.format.extent59-72 páginasspa
dc.language.isoengeng
dc.publisherEcopetrolspa
dc.relationCT&F Ciencia, Tecnología y Futuro. volumen 4, número 4, (diciembre, 2011); páginas 59-72spa
dc.rightsDerechos Reservados - Universidad Autónoma de Occidentespa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.sourceinstname:Universidad Autónoma de Occidentespa
dc.sourcereponame:Repositorio Institucional UAOspa
dc.subjectComputational fluid dynamiceng
dc.subjectMicroalgaeeng
dc.subjectMicroalgal biomasseng
dc.subjectShear stresseng
dc.subjectSolar collectoreng
dc.subjectTubular photobio-reactoreng
dc.subjectBiomasa microalgalesp
dc.subjectColectores solaresspa
dc.subjectDinámica de fluidos computacionalspa
dc.subjectEsfuerzos cortantesspa
dc.subjectMicroalgasspa
dc.subjectFotobiorreactor tubularspa
dc.titleHydrodynamic computational evaluation in solar tubular photobioreactors bends with different cross sectionseng
dc.typeArtículo de revistaspa
dc.relation.referencesAcién-Fernández, F. G., Fernández-Sevilla, J. M., Sánchez-Pérez, J. A., Molina-Grima, E. & Chisti, Y. (2001). Airliftdriven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance. Chem. Eng. Scie., 56: 2721-2732.eng
dc.relation.referencesAlpma, E. & Long, L. N. (2005). Separated turbulent flow simulations using a Reynolds stress model and unstructured meshes. 43rd. Aerospace Sciences Meeting & Exhibit. Reno, Nevada USA.eng
dc.relation.referencesAparecido, J. B. & Cotta R. M. (1990). Laminar flow inside hexagonal ducts. Computational Mechanics, 6 (2), 93-100.eng
dc.relation.referencesArada, N., Pires, M. & Sequeira, A. (2007). Viscosity effects on flows of generalized Newtonian fluids through curved pipes. Computers and Mathematics with Applications, 53: 625-646.eng
dc.relation.referencesAzzola, J., Humphrey, J. A. C., Iacovides, H. & Launder,B. E. (1986). Developing turbulent flow in a U-bend of circular cross-section: measurement and computation. J. Fluids Eng., 108: 214-221.eng
dc.relation.referencesBelt, R. J., Van't Westende, J. M. C., Portela, L. M., Mudde R. F. & Oliemans, R.V. A. (2004). Particle-driven secondary flow in turbulent horizontal pipe flows. 3rd. International symposium on two-phase flow modeling and experimentation. Pisa, Italia.eng
dc.relation.referencesBitog, J. P., Lee, I. B., Lee, C. G., Kim, K. S., Hwang, H. S., Hong, S. W., Seo, I. H., Kwon, K. S. & Mostafa, E. (2011). Application of computational fluid dynamics for modeling and designing photobioreactors for microalgae production: A review. J. Comp. Elec., 76 (2), 131-147.eng
dc.relation.referencesCamacho-Rubio, F., Acién-Fernández, F. G., Sánchez-Pérez, J. A., García-Camacho, F. & Molina-Grima, E. (1999). Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnology and Bioengineering, 62 (1), 71-86.eng
dc.relation.referencesChang, S. W., Chiang, K. F. & Chou, T. C. (2010). Heat transfer and pressure drop in hexagonal ducts with Surface dimples. Experimental Thermal and Fluid Science, 34 (8), 1172-1181.eng
dc.relation.referencesChen, W. Y., Jiang, N., An, Y. R. & Yuan, Q. H. (2009). Study on numerical simulation of single-phase injection device flow flied. Second International Conference on Information and Computing Science, 358-361. Manchester, United Kingdom.eng
dc.relation.referencesContreras, A., García, F., Molina, E. & Merchuk, J. C. (1998). Interaction between CO2-mass transfer, light availability, and hydrodynamic stress in the growth of Phaeodactylum tricornutum in a concentric tube airlift photobioreactor. Biotechnol Bioeng, 60 (3), 317-325.eng
dc.relation.referencesDyer, D. L. & Richardson, D. E. (1962). Materials of construction in algal culture. Ap-pl. Microbial., 10: 129-131.eng
dc.relation.referencesFernández-Roque, T., Toledo-Velázquez, M. & Vázquez-Flores, J. F. (2006). Caída de presión debida a un flujo en torbellino. Científica, 10 (4), 159-165. García, F. & Haoulo, M. (2009). Estudio experimental de patrones de flujo bifásico aire-agua en tuberías horizontales y ligeramente inclinadas. Información Tecnológica, 20 (3), 3-12.eng
dc.relation.referencesGarcía-Camacho, F., Gallardo-Rodríguez, J. J., Sánchez- Mirón, A., Cerón-García, M. C., Belarbi, E. H. & Molina-Grima, E. (2007). Determination of shear stress thresholds in toxic dinoflagellates cultured in shaken flasks Implications in bioprocess engineering. Process Biochemistry, 42:1506-1515.eng
dc.relation.referencesHämäläinen, V. (2001). Implementing an explicit algebraic Reynolds stress model into the three-dimensional FINFLO flow solver. Report B-52. Finland: Helsinki University of Technology.eng
dc.relation.referencesHarun, R., Singh, M. Forde, G. M. & Danquah, M. K. (2011). Bioprocess engineering of microalgae to produce a variety of consumer products. Renewable and Sustainable Energy Reviews, 14 (3), 1037-1047.eng
dc.relation.referencesHuttl, T. J. & Friedrich, R. (2000). Influence of curvature and torsion on turbulent flow in helically coiled pipes. Int. J. Heat Fluid Flow, 21 (3), 345-353.eng
dc.relation.referencesHuttl, T. J. & Friedrich, R. (2001). Direct numerical simulation of turbulent flows in curved and helically coiled pipes. Comput Fluids, 30 (5), 591-605.eng
dc.relation.referencesKhalid, A., Legrand, J. & Rosant, J. M. (1996). Turbulent flow induced by an impeller in a closed toroidal loop. J. Fluids Eng.. 118 (4), 677-684.eng
dc.relation.referencesLeeuwner, M. J. & Eksteen J. J. (2008). Computational fluid dynamic modeling of two phase flow in a hydrocyclone. J. South. Afri. Institute Min. and Metal., 108 (4), 231-236.eng
dc.relation.referencesMa, J. Shen, X. Zhang, M. & Zhang, B. (2006). Laminar developing flow in the entrance region of rotating curved pipes. J. Hydro Ser. B, 18 (4), 418-423.eng
dc.relation.referencesMata, T. M., Martins, A. A. & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14 (1), 217-232.eng
dc.relation.referencesMazzuca-Sobezuk, T., García-Camacho, F., Molina-Grima, E. & Chisti, Y. (2006). Effects of agitation on the microalgae Phaeodactylum tricornutum and Porphyridium cruentum. Bioprocess Biosyst Eng., 28 (4), 243-250.eng
dc.relation.referencesMichels, M., J. van der Goot, A., Norsker, N. H., Wijffels, R. H. (2010). Effects of shear stress on the microalgae Chaetoceros muelleri. Bioprocess Biosyst Eng., 33 (8), 921-927.eng
dc.relation.referencesMitsuhashi, S., Hosaka, K., Tomonaga, E., Muramatsu, H. & Tanishita, K. (1995). Effects of shear flow on photosynthesis in a dilute suspension of microalgae. Appl. Microbiol Biotechnol, 42 (5), 744-749.eng
dc.relation.referencesMolina-Grima, E., Acién-Fernández, F. G., García-Camacho, F. & Chisti, Y. (1999). Photobioreactors: light regime, mass transfer, and scaleup. J. Biotech., 70 (1-3), 231-247.eng
dc.relation.referencesMott, R. L. (2005). Applied fluid mechanics. USA: Prentice Hall.eng
dc.relation.referencesPerner-Nochta, I. & Posten, C. (2007). Simulations of light intensity variation in photobioreactors. J. Biotech., 131(3), 276-285.eng
dc.relation.referencesPruvost, J., Legrand, J. & Legentilhomme, P. (2004). Numerical investigation of bend and torus flows, part I: effect of swirl motion on flow structure in U-bend. Chem. Eng. Scie., 59(16), 3345-3357.eng
dc.relation.referencesRawat, I., Ranjith-Kumar, R., Mutanda, T. & Bux, F. (2011). Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy, 88 (10), 3411-3424.eng
dc.relation.referencesRosello Sastre, R., Csögör, Z., Perner-Nochta, I., Fleck-Schneider, P. & Posten, C. (2007). Scale-down of microalgae cultivations in tubular photo-bioreactors-A conceptual approach. J. Biotec., 132 (2), 127-133.eng
dc.relation.referencesRowe, M. (1970). Measurements and computations of flow in pipe bends. J. Fluids Mech., 43 (4), 771-783.eng
dc.relation.referencesSalim, S. M. & Cheah, S. C. (2009). Wall Y+ strategy for dealing with wall-bounded turbulent flows. Proceedings of the International MultiConference of Engineers and Computer Scientists, 3 (2), 18-20.eng
dc.relation.referencesSánchez-Mirón, A., García-Camacho, F., Contreras-Gómez, A., Molina-Grima, E. & Chisti, Y. (2000). Bubble-column and airlift photobioreactors for algal culture. AIChE Journal, 46 (9), 1872-1887.eng
dc.relation.referencesSantamarina, A., Weydahl, E., Siegel, J. M. & Moore, J. E. (1998). Computational analysis of flow in a curved tuve model of the coronary arteries: effects of time-varying curvature. Annals of Biomedical Engineering, 26 (6), 944-954.eng
dc.relation.referencesSchneiderbauer, S. & Pirker, S. (2010). Determination of open boundary conditions for computational fluid dynamics (CFD) from interior observations. Applied Mathematical Modelling, 35 (2), 763-780.eng
dc.relation.referencesShalaby, H., Pachler, K., Wozniak, K. & Wozniak, G. (2005). Comparative study of the continuous phase flow in a cyclone separator using different turbulence models. Int. J. Numer. Meth. Fluids, 48 (11), 1175-1197.eng
dc.relation.referencesSpolaore, P., Joannis-Cassan, C., Durán, E. & Isambert, A. (2006). Commercial applications of microalgae. J. Bios. Bioen., 101 (6), 201-211.eng
dc.relation.referencesSudo, K., Sumida, M. & Hibara, H. (2000). Experimental investigation on turbulent flow through a circular-sectioned 180° bend. Experiments in Fluids, 28 (1), 51-57eng
dc.relation.referencesUgwu, C. U., Ogbonna, J. C. & Tanaka, H. (2005). Characterization of light utilization and biomass yields of Chlorella sorokiniana in inclined outdoor tubular photobioreactors equipped with static mixers. Process Biochemistry, 40 (11), 3406-3411.eng
dc.relation.referencesUkeles, R. (1965). A simple method for the mass culture of marine algae. Limnology and Oceanography, 10 (3), 492-495.eng
dc.relation.referencesWu, X. & Merchuk, J. C. (2004). Simulation of algae growth in a bench scale internal loop airlift reactor. Chem. Eng. Scie., 59 (14), 2899-2912.eng
dc.relation.referencesYamamoto, K., Akita, T., Ikeuchi, H., & Kita, Y. (1995). Experimental study of the flow in a helical circular tube. Fluid Dyn Res., 16 (4), 237-249eng
dc.relation.referencesYue, P.; Dooley, J. & Feng, J. J. (2008). A general criterion for viscoelastic secondary flow in pipes of noncircular cross section. J. Rheol., 52 (1), 315-332. Zhang, J., Zhang, B. & Jü, J. (2001). Fluid flow in a rotating curved rectangular duct. Int. J. Heat Fluid Flow, 22:563-592eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Derechos Reservados - Universidad Autónoma de Occidente
Except where otherwise noted, this item's license is described as Derechos Reservados - Universidad Autónoma de Occidente