Show simple item record

dc.contributor.authorGordillo Suarez, Marisol
dc.contributor.authorRodríguez, Erich D
dc.contributor.authorMejia de Gutierrez, Ruby
dc.coverage.spatialUniversidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
dc.date.accessioned2020-02-12T18:50:51Z
dc.date.available2020-02-12T18:50:51Z
dc.date.issued2014
dc.identifier.issnimpreso: 17949165spa
dc.identifier.issnonline: 22564314spa
dc.identifier.urihttp://red.uao.edu.co//handle/10614/11867
dc.description.abstractEl presente artículo muestra la modelación y optimización de la resistencia a la compresión de un conglomerante no convencional libre de cemento Portland, el cual fue producido a partir de la activación alcalina de una mezcla binaria de un metacaolín (MK) y una escoria siderúrgica de alto horno (GBFS). Como factores de estudio se consideró una relación GBFS/(GBFS/MK) entre 0,0-0,8 y una relación molar total SiO2⁄Al2O3 entre 2,8-4,2. La relación SiO2⁄Al2O3 fue ajustada a través de la contribución del precursor (MK+GBFS) y el activador alcalino. La evaluación estadística mediante la metodología de superficie de respuesta (MSR) mostró un efecto significativo entre la relación molar SiO2=Al2O3 y el contenido de GBFS sobre la resistencia a compresión. Complementariamente se desarrolló una caracterización microestructural a través de difracción de rayos X y microscopía electrónica de barrido. La incorporación de GBFS incrementó la cinética de reacción y la formación de una estructura más densa y compacta. Estos nuevos productos de reacción le otorgaron al material un mayor desempeño mecánico comparado con los constituidos con un 100% de MK.spa
dc.description.abstractThe present article shows the compressive strength modeling and optimization for a non-conventional binder free of clinker, which was produced by the alkali activation of a binary mixture of metakaolin (MK) and a granulated blast furnace slag (GBFS). A GBFS/(GBFS+MK) ratio between 0,0 and 0,8; and the overall SiO2⁄Al2O3 molar ratio from 2,8 to 4,2 were considered as the main factor of this study. Sodium hydroxide and sodium silicate were used as alkali activator. The overall SiO2⁄Al2O3 molar ratio corresponds to the silica and alumina contribution from the precursor (MK+GBFS), as well as the alkali activator used. The statistical assessment through response surface methodology (MSR) showed a considerable effect between the SiO2⁄Al2O3 molar ratio, GBFS content and the compressive strength. Complementary, a microstructural characterization of the materials produced through X-ray diffraction (XRD) and scanning electron microscopy (SEM) was performed. The GBFS inclusion leads to an increasing of reaction kinetic and the formation of a more compact structure. These new reaction products gives to the material a higher mechanical performance than those based on a 100% of MK. The study shows the performance prediction in materials with 7 days of curing through the adjustment of some design criteria in order to obtain a binder with a particular mechanical performance.eng
dc.formatapplication/pdfeng
dc.format.extent24 páginasspa
dc.language.isospaspa
dc.publisherUniversidad EAFITspa
dc.relationIngeniería y Ciencia. volumen 10, número 19, (enero-junio de 2014); páginas 197-220. ISSN 1794-9165spa
dc.rightsDerechos Reservados - Universidad Autónoma de Occidentespa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/eng
dc.titleOptimización de la resistencia mecánica de cementos binarios MK/GBFS activados alcalinamente por Metodología de Superficie de Respuestaspa
dc.title.alternativeMechanical strength optimization of alkali-activated MK/GBFS binary cements through the response surface methodologyeng
dc.typeArtículo de revistaspa
dc.subject.armarcResistencia de materialesspa
dc.subject.armarcStrength of materialseng
dc.relation.citationendpage220
dc.relation.citationissue19
dc.relation.citationstartpage197
dc.relation.citationvolume10
dc.relation.citesGordillo, M., Rodríguez, E.D., Mejía de Gutiérrez, R (2014). Optimización de la resistencia mecánica de cementos binarios MK/GBFS activados alcalinamente por Metodología de Superficie de Respuesta. Ingeniería y Ciencia. 10(19), 197-220. http://red.uao.edu.co//handle/10614/11867spa
dc.relation.ispartofjournalIngeniería y cienciaspa
dc.relation.referencesV. Glukhovsky, “Soil silicates. Kiev”, USSR: Gostroiizdat Publish, 1959.
dc.relation.referencesJ. Davidovits, “Synthesis of new high temperature geo-polymers for reinforced plastics/composites”, 1979.
dc.relation.referencesC. Shi, D. M. Roy, and P. Krivenko, Alkali-activated Cements and Concretes. London. U.K.: Taylor & Francis, 2006.
dc.relation.referencesF. Puertas, “Cementos de escoria activados alcalinamente: situación actual y perspectivas de futuro”, Materiales de Construcción, vol. 45, no. 239, pp. 53-64, 1995.
dc.relation.referencesJ. L. Provis and J. S. J. van Deventer, Geopolymers. Structure, processing, properties and industrial applications. Oxford - Cambridge - New Delhi: Woodhead Publishing Limited, 2009.
dc.relation.referencesF. Pachecotorgal, J. Castrogomes, and S. Jalali, “Alkali-activated binders: A reviewPart 1. Historical background, terminology, reaction mechanisms and hydration products”, Construction and Building Materials, vol. 22, no. 7, pp. 1305-1314, Jul. 2008.
dc.relation.referencesF. Pachecotorgal, J. Castrogomes, and S. Jalali, “Alkali-activated binders: A review. Part 2. About materials and binders manufacture”, Construction and Building Materials, vol. 22, no. 7, pp. 1315-1322, Jul. 2008.
dc.relation.referencesAmerican Society for Testing & Materials, “ASTM C618 - 12a. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete”, 2012.
dc.relation.referencesA. Palomo, “Alkali-activated fly ashes A cement for the future”, Cement and Concrete Research, vol. 29, no. 8, pp. 1323-1329, Aug. 1999.
dc.relation.referencesA. Fernandezjimenez and A. Palomo, “Composition and microstructure of alkali activated fly ash binder: Effect of the activator”, Cement and Concrete Research, vol. 35, no. 10, pp. 1984-1992, Oct. 2005.
dc.relation.referencesJ. S. J. van Deventer, J. L. Provis, P. Duxson, and G. C. Lukey, “Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products”, Journal of Hazardous Materials, vol. 139, no. 3, pp. 506-513, Jan. 2007.
dc.relation.referencesJ. Davidovits, “Geopolymers: Inorganic polymeric new materials”, Journal Of Thermal Analysis, vol. 37, no. 8, pp. 1633-1656, 1991.
dc.relation.referencesC. K. Yip, G. C. Lukey, and J. S. J. van Deventer, “The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation”, Cement and Concrete Research, vol. 35, no. 9, pp. 1688-1697, Sep. 2005.
dc.relation.referencesZ. Yunsheng, S. Wei, C. Qianli, and C. Lin, “Synthesis and heavy metal immobilization behaviors of slag based geopolymer”, Journal of hazardous materials, vol. 143, no. 1-2, pp. 206-13, May 2007.
dc.relation.referencesF.-Q. Zhao, W. Ni, H.-J. Wang, and H.-J. Liu, “Activated fly ash/slag blended cement”, Resources, Conservation and Recycling, vol. 52, no. 2, pp. 303-313, Dec. 2007.
dc.relation.referencesF. Puertas, S. Martínez-Ramírez, S. Alonso, and T. Vázquez, “Alkaliactivated fly ash/slag cements”, Cement and Concrete Research, vol. 30, no. 10, pp. 1625-1632, Oct. 2000.
dc.relation.referencesF. Puertas and A. Fernández-Jiménez, “Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes,” Cement and Concrete Composites, vol. 25, no. 3, pp. 287-292, Apr. 2003.
dc.relation.referencesS. Bernal, E. Rodríguez, R. Mejía de Gutiérrez, J. Provis, and S. Delvasto, “Activation of Metakaolin/Slag Blends Using Alkaline Solutions Based on Chemically Modified Silica Fume and Rice Husk Ash,” Waste and Biomass Valorization, vol. 3, no. 1, pp. 99-108, 2012.
dc.relation.referencesS. A. Bernal, R. Mejía De Gutiérrez, and J. L. Provis, “Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends,” Construction and Building Materials, vol. 33, pp. 99-108, 2012.
dc.relation.referencesS. Bernal, M. Gordillo, R. Mejía de Gutiérrez, E. Rodríguez, S. Delvasto, and R. Cuero, “Modelamiento de la resistencia a la compresión de concretos alternativos, usando la metodología de superficie de respuesta (Modeling of the compressive strength of alternative concretes using the response surface methodology),” Revista Facultad de Ingenieria. Universidad de Antioquia, vol. 49, no. 11, pp. 112-123, 2009.
dc.relation.referencesS. Kumar, R. Kumar, and S. P. Mehrotra, “Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer,” Journal of Materials Science, vol. 45, no. 3, pp. 607-615, Oct. 2009.
dc.relation.referencesM. Izquierdo, X. Querol, J. Davidovits, D. Antenucci, H. Nugteren, and C. Fernández-Pereira, “Coal fly ash-slag-based geopolymers: microstructure and metal leaching.,” Journal of Hazardous Materials, vol. 166, no. 1, pp. 561-6, Jul. 2009.
dc.relation.referencesM. Izquierdo, X. Querol, C. Phillipart, D. Antenucci, and M. Towler, “The role of open and closed curing conditions on the leaching properties of fly ash-slag-based geopolymers.,” Journal of Hazardous Materials, vol. 176, no. 1-3, pp. 623-8, Apr. 2010.
dc.relation.referencesA. Fernández-Jiménez, M. Monzó, M. Vicent, A. Barba, and A. Palomo, “Alkaline activation of metakaolin-fly ash mixtures: Obtain of Zeoceramics and Zeocements,” Microporous and Mesoporous Materials, vol. 108, no. 1-3, pp. 41-49, Feb. 2008.
dc.relation.referencesL. A. Sarabia and M. C. Ortiz, “Response Surface Methodology,” In: Brown S, Tauler R, Walczak R (eds.) Comprehensive Chemometrics, vol 1, pp. 345- 390, 2009. Oxford: Elsevier
dc.relation.referencesD. C. Montgomery, Design and Analysis of Experiments, Second edi. New York. U.S., 2005.
dc.relation.referencesJ.-T. Horng, N.-M. Liu, and K.-T. Chiang, “Investigating the machinability evaluation of Hadfield steel in the hard turning with Al2O3/TiC mixed ceramic tool based on the response surface methodology,” Journal of Materials Processing Technology, vol. 208, no. 1-3, pp. 532-541, Nov. 2008.
dc.relation.referencesD. Thirumalaikumarasamy, K. Shanmugam, and V. Balasubramanian, “Influences of atmospheric plasma spraying parameters on the porosity level of alumina coating on AZ31B magnesium alloy using response surface methodology,” Progress in Natural Science: Materials International, vol. 22, no. 5, pp. 468-479, Oct. 2012.
dc.relation.referencesA. Chakchouk, L. Trifi, B. Samet, and S. Bouaziz, “Formulation of blended cement: Effect of process variables on clay pozzolanic activity,” Construction and Building Materials, vol. 23, no. 3, pp. 1365-1373, Mar. 2009.
dc.relation.referencesE. K. K. Nambiar and K. Ramamurthy, “Models relating mixture composition to the density and strength of foam concrete using response surface methodology,” Cement and Concrete Composites, vol. 28, no. 9, pp. 752-760, Oct. 2006.
dc.relation.referencesB. S. Mohammed, O. C. Fang, K. M. Anwar Hossain, and M. Lachemi, “Mix proportioning of concrete containing paper mill residuals using response surface methodology,” Construction and Building Materials, vol. 35, pp. 63- 68, Oct. 2012.
dc.relation.referencesM. T. Cihan, A. Güner, and N. Yüzer, “Response surfaces for compressive strength of concrete,” Construction and Building Materials, vol. 40, pp. 763- 774, Mar. 2013.
dc.relation.referencesL. E. Chávez-Valencia, C. Hernández-Barriga, and A. Manzano-Ramírez, “Modelación del envejecimiento de los pavimentos asfálticos con la metodología de la superficie de respuesta,” Ingeniería Investigación, vol. 12, no. 4, pp. 373-382, 2011.
dc.relation.referencesJ. Fornosa, “Formulaciones de nuevos morteros y cementos especiales basados en sub-productos de magnesio.,” Universitat de Barcelona, 2012.
dc.relation.referencesAmerican Society for Testing & Materials, “Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency,” 2012.
dc.relation.referencesJ. W. Phair and J. S. J. Van Deventer, “Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers,” Minerals Engineering, vol. 14, no. 3, pp. 289-304, Mar. 2001.
dc.relation.referencesC. K. Yip, G. C. Lukey, J. L. Provis, and J. S. J. van Deventer, “Effect of calcium silicate sources on geopolymerisation,” Cement and Concrete Research, vol. 38, no. 4, pp. 554-564, Apr. 2008.
dc.relation.referencesM. L. Granizo and M. T. Blanco, “Alkaline Activation of Metakaolin An Isothermal Conduction Calorimetry Study,” Journal of Thermal Analysis and Calorimetry, vol. 52, no. 3, pp. 957-965.
dc.relation.referencesS. A. Bernal, J. L. Provis, V. Rose, and R. Mejía de Gutierrez, “Evolution of binder structure in sodium silicate-activated slag-metakaolin blends,” Cement and Concrete Composites, vol. 33, no. 1, pp. 46-54, Jan. 2011.
dc.relation.referencesM. L. Granizo, M. T. Blanco-Varela, and A. Palomo, “Influence of the starting kaolin on alkali-activated materials based on metakaolin. Study of the reaction parameters by isothermal conduction calorimetry,” Journal of Materials Science, vol. 35, no. 24, pp. 6309-6315, 2000.
dc.relation.referencesL. Holzer, R. Figi, A. Gruskovnjak, B. Lothenbach, and F. Winnefeld, “Hydration of alkali-activated slag: comparison with ordinary Portland cement,” Advances in Cement Research, vol. 18, no. 3, pp. 119-128, Jan. 2006.
dc.relation.referencesA. Fernández-Jiménez, F. Puertas, and Á. Arteaga Iriarte, “Determination of kinetic equations of alkaline activation of blast furnace slag by means of calorimetric data,” Journal of Thermal Analysis and Calorimetry, vol. 52, no. 3, pp. 945-955, 1998.
dc.relation.referencesM. L. Granizo, S. Alonso, M. T. Blanco-varela, and A. Palomo, “Alkaline Activation of Metakaolin: Effect of Calcium Hydroxide in the Products of Reaction,” Journal of the American Ceramic Society, vol. 85, no. 1, pp. 225- 231, 2002.
dc.relation.referencesA. Fernandezjimenez, A. Palomo, and M. Criado, “Microstructure development of alkali-activated fly ash cement: a descriptive model,” Cement and Concrete Research, vol. 35, no. 6, pp. 1204-1209, Jun. 2005.
dc.relation.referencesC. K. Yip and J. S. J. van Deventer, “Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder,” Journal of Materials Science, vol. 38, no. 18, pp. 3851-3860.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalMetodología de superficie de respuestaspa
dc.subject.proposalResistencia a la compresiónspa
dc.subject.proposalCementos de activación alcalinaspa
dc.subject.proposalMetacaolínspa
dc.subject.proposalEscoria siderúrgica de alto hornospa
dc.subject.proposalResponse surface methodologyeng
dc.subject.proposalCompressive strengtheng
dc.subject.proposalAlkali-activated binderseng
dc.subject.proposalGranulated blast furnace slageng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501eng
dc.type.contentTexteng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFeng
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2eng
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85eng
dc.type.versioninfo:eu-repo/semantics/publishedVersioneng


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Derechos Reservados - Universidad Autónoma de Occidente
Except where otherwise noted, this item's license is described as Derechos Reservados - Universidad Autónoma de Occidente