Show simple item record

dc.contributor.authorLain, Santiago
dc.contributor.authorCaballero Gaviria, Andrés David
dc.coverage.spatialUniversidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
dc.identifier.citationCaballero, A.D., & Laín, S. (2013). A Review on Computational Fluid Dynamics Modelling in Human Thoracic Aorta. Cardiovascular Engineering and Technology, 4, 103-130. DOI: 10.1007/s13239-013-0146-6eng
dc.description.abstractIt has long been recognized that the forces and stresses produced by the blood flow on the walls of the cardiovascular system are central to the development of different cardiovascular diseases. However, up to now, the reason why arterial diseases occur at preferential sites is still not fully understood. This paper reviews the progress, made largely within the last decade, towards the use of 3D computational fluid dynamics (CFD) models to simulate the blood flow dynamics and its interaction with the arterial wall within the human thoracic aorta (TA). We describe the technical aspects of model building, review methods to create anatomic and physiologic models, obtain material properties, assign boundary conditions, solve the equations governing blood flow , and describe the assumptions used in running the simulations. Detailed comparative information is provided in tabular format about the model setup, simulation results, and a summary of the major insights and contributions of each TA article reviewed. Several syntheses are given that summarize the research carried out by influential research groups, review important findings, discuss the methods employed, limitations, and opportunities for further research. We hope that this review will stimulate computational research that will contribute to the continued improvement of cardiovascular health through a strong interaction and cooperation between engineers and clinicianseng
dc.format.extentpáginas 1-44spa
dc.publisherUniversidad Autónoma de Occidentespa
dc.relationCardiovascular Engineering and Technology. páginas 1-32eng
dc.rightsDerechos Reservados - Universidad Autónoma de Occidentespa
dc.sourceinstname:Universidad Autónoma de Occidentespa
dc.sourcereponame:Repositorio Institucional UAOspa
dc.subjectBlood floweng
dc.subjectComputational fluid dynamicseng
dc.subjectHuman thoracic aortaeng
dc.titleA review on computational fluid dynamics modelling in human thoracic aortaeng
dc.typeArtículo de revistaspa
dc.relation.ispartofjournalCardiovascular Engineering and Technologyeng
dc.relation.referencesMori D, Yamaguchi T. 2002a. Computational fluid dynamics modelling and analysis of the effect of 3-D distortion of the human aortic arch. Comput Methods Biomech Biomed Engin. 5:249–260.
dc.relation.referencesMori D, Hayasaka T, Yamaguchi T. 2002b. Modelling of the human aortic arch with its major branches for computational fluid dynamics simulation of the blood flow. JSME. C-45(4):997-1002.
dc.relation.referencesShahcheraghi N, Dwyer HA, Cheer AY, Barakat AI, Rutanganira T. 2002. Unsteady and three-dimensional simulation of blood flow in the human aortic arch. J Biomech Eng. 124(4):378-87.
dc.relation.referencesJin S, Oshinski J, Giddens DP. 2003. Effect of wall motion and compliance on flow patterns in the ascending aorta. J. Biomech. Eng. 125:347–354.
dc.relation.referencesLeuprecht A, Kozerke S, Boesiger P, Perktold K. 2003. Blood flow in the human ascending aorta: a combined MRI and CFD study. Journal of Engineering Mathematics. 47:387–404.
dc.relation.referencesKim T, Cheer AY, Dwyer HA. 2004. A simulated dye method for flow visualization with a computational model for blood flow. J Biomech. 27:1125–1136.
dc.relation.referencesMorris L, Delassus P, Callanan A, Walsh M, Wallis F, Grace P, McGloughlin T. 2005. 3-D numerical simulation of blood flow through models of the human aorta. J Biomech Eng. 127:767-775.
dc.relation.referencesGao F, Watanabe M, Matsuzawa T. 2006. Stress analysis in a layered aortic arch model under pulsatile blood flow. Biomed. Eng Online. 5:25.
dc.relation.referencesGao F, Matsuzawa T. 2006. FSI within aortic arch model over cardiac cycle and Influence of wall stiffness on wall stress in layered wall. Engineering Letters. 13:167-172.
dc.relation.referencesGao F, Guo Z, Sakamoto M, Matsuzawa T. 2006. Fluid structure interaction within a layered aortic arch model. Journal of Biological Physics. 32(5):435–454.
dc.relation.referencesGardhagen R, Renner J, Lanne T, Karlsson M. 2006. Subject specific wall shear stress in the human thoracic aorta. WSEAS Transaction on Biology and Biomedicine. 3(10):609-614.
dc.relation.referencesPark YJ, Park CY, Hwang CM, Sun K, Min BG. 2007. Pseudo-organ boundary conditions applied to a computational fluid dynamics model of the human aorta. Comput. Biol. Med. 37(8):1063-1072.
dc.relation.referencesGao F, Ohta O, Matsuzawa T. 2008. Fluid-structure interaction in layered aortic arch aneurysm model: assessing the combined influence of arch aneurysm and wall stiffness. Australas Phys Eng Sci Med. 3(1):32-41.
dc.relation.referencesLam SK, Fung GSK, Cheng SWK, Chow WK. 2008. A computational study on the biomechanical factors related to stent-graft models in the thoracic aorta. Med Biol Eng Comput. 46:1129–1138.
dc.relation.referencesSoulis JV, Giannoglou GD, Dimitrakopoulou M, Logothetides S, Mikhailidis D. 2009. Influence of oscillating flow on LDL transport and wall shear stress in the normal aortic arch. Open Cardiovasc Med J. 17:128-142.
dc.relation.referencesRenner J, Gardhagen R, Heiberg E, Ebbers T, Loyd D, Länne T, Karlsson M. 2009. A method for subject specific estimation of aortic wall shear stress. WSEAS Transaction on Biology and Biomedicine. 6(3):49-57.
dc.relation.referencesRenner J, Loyd D, Lanne T, Karlsson M. 2009. Is a flat inlet profile sufficient for WSS estimation in the aortic arch? WSEAS Transactions on Fluid Mechanics. 4(4):148-160.
dc.relation.referencesKim HJ, Vignon-Clementel IE, Figueroa CA, LaDisa JF Jr, Jansen KE, Feinstein JA, Taylor CA. 2009. On coupling a lumped parameter heart model and a three-dimensional finite element aorta model. Ann Biomed Eng. 37(11):2153–2169.
dc.relation.referencesLiu X, Pu F, Fan Y. 2009. A numerical study on the flow of blood and the transport of LDL in the human aorta: the physiological significance of the helical flow in the aortic arch. Am J Physiol Heart Circ Physiol. 297: H163-H170.
dc.relation.referencesTan FPP, Torii R, Borghi A, Mohiaddin RH, Wood NB, Thom S, Xu XY. 2009. Analysis of flow patterns in a patient-specific thoracic aortic aneurysm model. Computers and Structures. 87:680-690.
dc.relation.referencesWen CY, Yang AS, Tseng LY, Chai JW. 2010. Investigation of pulsatile flow field in healthy thoracic aorta models. Ann Biomed Eng. 38(2):391-402.
dc.relation.referencesLiu X, Fan YB, Deng XY. 2010. Effect of spiral flow on the transport of oxygen in the aorta: A numerical study. Ann Biomed Eng. 38:917-926.
dc.relation.referencesWang X, Li X. 2011. Biomechanical behaviors of curved artery with flexible wall: a numerical study using fluid-structure interaction method. Comput Biol Med. 41(11):1014-1021.
dc.relation.referencesWang X, Li X. 2011. Computational simulation of aortic aneurysm using FSI method: influence of blood viscosity on aneurismal dynamic behaviors. Comput Biol Med. 41(9):812-821.
dc.relation.referencesLiu X, Fan Y, Deng X, Zhan F. 2011. Effect of non-Newtonian and pulsatile blood flow on mass transport in the human aorta. J Biomech. 44(6):1123-1131.
dc.relation.referencesCrosetto P, Reymond P, Deparis S; Kontaxakis D, Stergiopulos N, Quarteroni A. 2011. Fluid-structure interaction simulation of aortic blood flow. Computers & Fluids. 43:46-57.
dc.relation.referencesSoulis JV, Fytanidis DK, Papaioannou VC, Styliadis H Giannoglou GD. 2011. Oscillating LDL accumulation in normal human aortic arch - shear dependent endothelium. Hippokratia. 15:22–25.
dc.relation.referencesBenim AC, Nahavandi A, Assmann A, Schubert D, Feindt P, Suh SH. 2011. Simulation of blood flow in human aorta with emphasis on outlet boundary conditions. Appl Math Modell. 35(7):3175-3188.
dc.relation.referencesLantz J, Renner J, Karlsson M. 2011. Wall shear stress in a subject specific human aorta - Influence of fluid-structure interaction. Int. J. Appl. Mechanics. 3:759-778.
dc.relation.referencesTse KM, Chiu P, Lee HP, Ho P. 2011. Investigation of hemodynamics in the development of dissecting aneurysm within patient-specific dissecting aneurismal aortas using computational fluid dynamics (CFD) simulations. J Biomech. 44(5):827-836.
dc.relation.referencesFilipovic N, Milasinovic D, Zdravkovic N, Böckler D, von Tengg-Kobligk H. 2011. Impact of aortic repair based on flow field computer simulation within the thoracic aorta. Comput Methods Programs Biomed. 101(3): 243-252.
dc.relation.referencesKeshavarz-Motamed Z, Kadem L. 2011. 3D pulsatile flow in a curved tube with coexisting model of aortic stenosis and coarctation of the aorta. Med Eng Phys. 33(3):315-324.
dc.relation.referencesOlivieri LJ, de Zélicourt DA, Haggerty CM, Ratnayaka K, Cross RR, Yoganathan AP. 2011. Hemodynamic modelling of surgically repaired coarctation of the aorta. Cardiovasc Eng Technol. 2(4):288-295.
dc.relation.referencesLaDisa JF Jr, Figueroa CA, Vignon-Clementel IE, Kim HJ, Xiao N, Ellwein LM, Chan FP, Feinstein JA, Taylor CA. 2011a. Computational simulations for aortic coarctation: representative results from a sampling of patients. J Biomech Eng. 133(9):81-89.
dc.relation.referencesLaDisa JF Jr, Dholakia RJ, Figueroa CA, Vignon-Clementel IE, Chan FP, Samyn MM, Cava JR, Taylor CA, Feinstein JA. 2011b. Computational simulations demonstrate altered wall shear stress in aortic coarctation patients treated by resection with end-to-end anastomosis. Congenit Heart Dis. 6(5):432-443.
dc.relation.referencesGallo D, De Santis G, Negri F, Tresoldi D, Ponzini R, Massai D, Deriu MA, Segers P, Verhegghe B, Rizzo G, Morbiducci U. 2012. On the use of in vivo measured flow rates as boundary conditions for image-based hemodynamic models of the human aorta: implications for indicators of abnormal flow. Ann Biomed Eng. 40(3):729-41.
dc.relation.referencesLantz J, Karlsson M. 2012. Large eddy simulation of LDL surface concentration in a subject specific human aorta. J Biomech. 45(3):537-542.
dc.relation.referencesLantz J, Gardhagen R, Karlsson M. 2012. Quantifying turbulent wall shear stress in a subject specific human aorta using large eddy simulation. Med Eng Phys. 34(8):1139-1148.
dc.relation.referencesBrown AG, Shi Y, Marzo A, Staicu C, Valverde I, Beerbaum P, Lawford PV, Hose DR. 2012. Accuracy vs. computational time: translating aortic simulations to the clinic. J Biomech. 45(3):516-523.
dc.relation.referencesVasava P, Jalali P, Dabagh M, Kolari P. 2012. Finite element modelling of pulsatile blood flow in idealized model of human aortic arch: Study of hypotension and hypertension. Comp. Math. Methods in Medicine. doi: 10.1155/2012/861837.
dc.relation.referencesMoireau P, Xiao N, Astorino M, Figueroa CA, Chapelle D, Taylor CA, Gerbeau JF. 2012a. External tissue support and fluid- structure simulation in blood flows. Biomech Model Mechanobiol. 11:1–18.
dc.relation.referencesReymond P, Crosetto P, Deparis S, Quarteroni A, Stergiopulos N. 2012. Physiological simulation of blood flow in the aorta: Comparison of hemodynamic indices as predicted by 3-D FSI, 3-D rigid wall and 1-D models. Med Eng Phys.
dc.relation.referencesCoogan JS, Humphrey JD, Figueroa CA. 2012b. Computational simulations of hemodynamic changes within thoracic, coronary, and cerebral arteries following early wall remodelling in response to distal aortic coarctation. Biomech Model Mechanobiol. doi: 10.1007/s10237-012-0383-x.
dc.relation.referencesCoogan JS, Chan FP, LaDisa JF Jr, Taylor CA, Hanley FL, Feinstein JA. 2012a. Computational fluid dynamic simulations for determination of ventricular workload in aortic arch obstructions. J Thorac Cardiovasc Surg. doi: 10.1016/j.jtcvs.2012.03.051.
dc.relation.referencesWendell DC, Samyn MM, Cava JR, Ellwein LM, Krolikowski MM, Gandy KL, Pelech AN, Shadden SC, LaDisa JF Jr. 2012. Including aortic valve morphology in computational fluid dynamics simulations: Initial findings and application to aortic coarctation. Med Eng Phys.
dc.relation.referencesMorbiducci U, Ponzini R, Gallo D, Bignardi C, Rizzo G. 2013. Inflow boundary conditions for image-based computational hemodynamics: impact of idealized versus measured velocity profiles in the human aorta. J Biomech. 46:102-109.
dc.relation.referencesCardiovascular diseases (CVDs), Fact sheet 317. In: World Health Organization. 2012. Accessed 15 December 2012
dc.relation.referencesDavies PF, Mundel T, Barbee KA. 1995. A mechanism for heterogeneous endotelial responses to flow in vivo and in vitro. Journal of Biomechanics. 28:1553-1560.
dc.relation.referencesDavies PF, Dewey CF, Bussolari S, Gordon E, Gimbrone MA. 1984. Influence of hemodynamic forces on vascular endothelial function. In vitro studies of shear stress and pinocytosis in bovine aortic cells. Journal of Clinical Investigation. 73:1121-1129.
dc.relation.referencesGimbrone Jr MA, Topper JN, Nagel T, Anderson KR, Garcia-Cardena G. 2000. Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann N Y Acad Sci. 902:230–239.
dc.relation.referencesResnick N, Yahav H, Shay-Salit A, Shushy M, Schubert S, Zilberman LC, Wofovitz E. 2003. Fluid shear stress and the vascular endothelium: for better and for worse. Prog Biophys Mol Biol. 81(3):177–199.
dc.relation.referencesWhite CR, Frangos JA. 2007. The shear stress of it all: the cell membrane and mechanochemical transduction. Phil Trans R Soc B. 362:1459–1467.
dc.relation.referencesKu DN, Giddens DP, Zarins CK, Glagov S. 1985. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis. 5(3):293–302.
dc.relation.referencesMoore J, Xu C, Glagov S, Zarins CK, Ku DN. 1994. Fluid wall shear stress measurements in a model of the human abdominal aorta: oscillatory behavior and relationship to atherosclerosis. Atherosclerosis. 110(2):225–240.
dc.relation.referencesCheng C, Tempel D, van Haperen R, van der Baan A, Grosveld F, Daemen MJ, Krams R, de Crom R. 2006. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation. 113(23):2744–2753.
dc.relation.referencesCecchi E, Giglioli C, Valente S, Lazzeri C, Gensini GF, Abbate R, Mannini L. 2011. Role of hemodynamic shear stress in cardiovascular disease. Atherosclerosis. 214(2):249-256.
dc.relation.referencesFriedman MH, Deters OJ, Mark FF, Bargeron CB, Hutchins GM. 1983. Arterial geometry affects hemodynamics. A potential risk factor for athersoclerosis. Arteriosclerosis. 46(2):225-231.
dc.relation.referencesKu DN. 1997. Blood flow in arteries. Annu Rev Fluid Mech. 29:399-434.
dc.relation.referencesCunningham KS, Gotlieb AI. 2005. The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest. 85(1):9–23.
dc.relation.referencesWahle A, Lopez JJ, Olszewski ME, Vigmostad SC, Chandran KB, Rossen JD, Sonka M. 2006. Plaque development, vessel curvature, and wall shear stress in coronary arteries assessed by X-ray angiography and intravascular ultrasound. Med Image Anal. 10(4):615-631.
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa

Files in this item


This item appears in the following Collection(s)

Show simple item record

Derechos Reservados - Universidad Autónoma de Occidente
Except where otherwise noted, this item's license is described as Derechos Reservados - Universidad Autónoma de Occidente