Show simple item record

dc.contributor.authorLain, Santiago
dc.contributor.authorSommerfeld, Martín
dc.contributor.authorErnst, Martín
dc.coverage.spatialUniversidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
dc.date.accessioned2019-11-20T21:53:51Z
dc.date.available2019-11-20T21:53:51Z
dc.date.issued2019-05-24
dc.identifier.issn0301-9322spa
dc.identifier.urihttp://hdl.handle.net/10614/11556
dc.description.abstractThis paper addresses the effect of inter-particle collisions on the segregation of non-settling inertial particles in homogeneous isotropic turbulence. For this purpose, direct numerical simulations of particles in statistically steady homogeneous isotropic turbulence have been performed by the lattice Boltzmann method considering inter-particle collisions. The preferential concentration of suspended particles is quantified using several clustering measures: segregation parameter, correlation dimension, radial distribution function, Voronoï diagrams and the topological tool of Minkowski functionals. Effects of particle inertia, inter-particle collisions and increasing volume fraction in the aforementioned measures are discussed. The obtained results show that collisions between particles have a remarkable influence on the formation of clusters. In particular, under locally dilute conditions, increasing particle volume fraction implies a moderate clustering intensification, but for locally dense conditions an increase of the mean inter-particle distance inside clusters can be envisaged as a consequence of the re-dispersing effect of inter-particle collisionseng
dc.formatapplication/pdfeng
dc.format.extent19 páginasspa
dc.language.isoengeng
dc.publisherElseviereng
dc.rightsDerechos Reservados - Universidad Autónoma de Occidentespa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/eng
dc.titleQuantification of preferential concentration of colliding particles in a homogeneous isotropic turbulent floweng
dc.typeArtículo de revistaspa
dc.subject.armarcDinámica de fluidosspa
dc.subject.armarcFluid dynamicseng
dc.identifier.doihttps://doi.org/10.1016/j.ijmultiphaseflow.2019.05.007eng
dc.relation.citationvolume117
dc.relation.citesErnst, M., Sommerfeld, M., & Laín, S. (2019). Quantification of preferential concentration of colliding particles in a homogeneous isotropic turbulent flow. International Journal of Multiphase Flow, 117. 163-181. https://doi.org/10.1016/j.ijmultiphaseflow.2019.05.007eng
dc.relation.ispartofjournalInternational Journal of Multiphase Floweng
dc.relation.referencesAyala et al., 2008ª O. Ayala, B. Rosa, L.-P. Wang, W.W. Grabowski Effects of turbulence on the geometric collision rate of sedimenting droplets: part 1. Results from direct numerical simulation New J. Phys., 10 (2008), Article 075015
dc.relation.referencesAyala et al., 2008b A. Ayala, B. Rosa, L.-P. Wang Effects of turbulence on the geometric collision rate of sedimenting droplets: part 2. Theory and parameterization New J. Phys., 10 (2008), Article 075016
dc.relation.referencesBaker et al., 2017 L. Baker, A. Frankel, A. Mani, F. Coletti Coherent clusters of inertial particles in homogeneous turbulence J. Fluid Mech., 833 (2017), pp. 364-398
dc.relation.referencesBec et al., 2005 J. Bec, A. Celani, M Cencini, S. Musacchio Clustering and collisions of heavy particle in random smooth flows Phys. Fluids, 17 (2005), Article 073301
dc.relation.referencesBec et al., 2007 J. Bec, L. Biferale, M. Cencini, A. Lanotte, S. Musacchio, F. Toschi Heavy particle concentration in turbulence at dissipative and inertial scales Phys. Rev. Lett., 98 (2007), Article 084502
dc.relation.referencesBhatnagar et al., 1954 P.L. Bhatnagar, E.P. Gross, M.A. Krook Model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems Phys. Rev., 94 (1954), pp. 511-525
dc.relation.referencesBragg et al., 2015 A.D. Bragg, P.J. Ireland, L.R. Collins Mechanisms for the clustering of inertial particles in the inertial range of isotropic turbulence Phys. Rev. E, 92 (2015), Article 023029
dc.relation.referencesCahyadi et al., 2017 A. Cahyadi, A. Anantharaman, S. Yang, S.B. Reddy Karri, J.G. Findlay, RA. Cocco, J.W. Chew Review of cluster characteristics in circulating fluidized bed (CFB) risers Chem. Eng. Sci., 158 (2017), pp. 70-95
dc.relation.referencesCalzavarini et al., 2008 E. Calzavarini, M. Kerscher, D. Lohse, F. Toschi Dimensionality and morphology of particle and bubble clusters in turbulent flow J. Fluid Mech., 607 (2008), pp. 13-24
dc.relation.referencesCarlos Varas et al., 2017 A.E. Carlos Varas, E.A.J.F. Peters, J.A.M. Kuipers CFD-DEM simulations and experimental validation of clustering phenomena and riser hydrodynamics Chem. Eng. Sci., 169 (2017), pp. 246-258
dc.relation.referencesChen et al., 2006 L. Chen, S. Goto, J.C. Vassilicos Turbulent clustering of stagnation points and inertial particles J. Fluid Mech., 553 (2006), pp. 143-154
dc.relation.referencesCihonski et al., 2013 A. Cihonski, J.R. Finn, S.V. Apte, R.A. Gore A mean shift algorithm for cluster identification in particle-laden turbulent flows Proc. 8th Int. Conf. on Multiphase Flow ICMF 2013, Jeju, Korea (2013) May 26-31, 2013
dc.relation.referencesColeman and Vassilicos, 2009 S.W. Coleman, J.C. Vassilicos A unified sweep-stick mechanism to explain particle clustering in two-and three-dimensional homogeneous, isotropic turbulence Phys. Fluids, 21 (2009), Article 113301
dc.relation.referencesComte-Bellot and Corrsin, 1971 G. Comte-Bellot, S. Corrsin Simple Eulerian time correlation of full and narrow-band velocity signals in grid-generated, ’isotropic’ turbulence J. Fluid Mech., 48 (1971), pp. 273-337
dc.relation.referencesCrowe, 1981 C.T. Crowe On the relative importance of particle-particle collisions in gas-particle flows Proc. of the Conf. on Gas Borne Particles (1981), pp. 135-137 Paper C78/81
dc.relation.referencesDietzel et al., 2016 M. Dietzel, M. Ernst, M. Sommerfeld Application of the Lattice-Boltzmann method for particle-laden flows: point-particles and fully resolved particles Flow Turbul. Combust., 97 (2016), pp. 539-570
dc.relation.referencesEaton and Fessler, 1994 J.K. Eaton, J.R. Fessler Preferential concentration of particles by turbulence Int. J. Multiphase Flow, 20 (1994), pp. 169-209
dc.relation.referencesErnst and Sommerfeld, 2012 M. Ernst, M. Sommerfeld On the volume fraction effects of inertial colliding particles in homogeneous isotropic turbulence ASME J. Fluids Eng., 134 (031302) (2012)
dc.relation.referencesEswaran and Pope, 1988 V. Eswaran, S.B. Pope An examination of forcing in direct numerical simulations of turbulence Comput. Fluids, 16 (1988), pp. 257-278
dc.relation.referencesFalkovich et al., 2002 G. Falkovich, A. Fouxon, M.G. Stepanov Acceleration of rain initiation by cloud turbulence Nature, 419 (2002), pp. 151-154
dc.relation.referencesFedé and Simonin, 2006 P. Fedé, O. Simonin Numerical study of the subgrid fluid turbulence effects on the statistics of heavy colliding particles Phys. Fluids, 18 (2006) Article No. 045103
dc.relation.referencesFede and Simonin, 2010 P. Fede, O. Simonin Effect of particle-particle collisions on the spatial distribution of inertial particles suspended in homogeneous isotropic turbulent flows Turbulence and Interactions. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 110, Springer (2010), pp. 119-125
dc.relation.referencesFerenc and Néda, 2007 J.S. Ferenc, Z. Néda On the size distribution of Poisson Voronoï cells Physica A, 385 (2007), pp. 518-526
dc.relation.referencesFessler et al., 1994 J.R. Fessler, J.D. Kulick, J.K. Eaton Preferential concentration of heavy particles in a turbulent channel flow Phys. Fluids, 6 (1994), pp. 3742-3749
dc.relation.referencesFévrier et al., 2001 P. Février, O. Simonin, D. Legendre Particle dispersion and preferential concentration dependence on turbulent Reynolds number from direct and large-eddy simulations of isotropic homogeneous turbulence Proc. 4th International Conference on Multiphase Flow, New Orleans, Louisiana (2001), pp. 1-12
dc.relation.referencesFévrier et al., 2005 P. Février, O. Simonin, K.D. Squires Partitioning of particle velocities in gas–solid turbulent flows into a continuous field and a spatially uncorrelated random distribution: theoretical formalism and numerical study J. Fluid Mech., 533 (2005), pp. 1-46
dc.relation.referencesGosman and loannides, 1983 A.D. Gosman, E. loannides Aspects of computer simulation of liquid-fueled combustors J. Energy, 7 (1983), pp. 482-490
dc.relation.referencesGoto and Vassilicos, 2006 S. Goto, J.C. Vassilicos Self-similar clustering of inertial particles and zero-acceleration points if fully developed two-dimensional turbulence Phys. Fluids, 18 (2006), Article 115103
dc.relation.referencesGoto and Vassilicos, 2008 S. Goto, J.C. Vassilicos Sweep-stick mechanism of heavy particle clustering in fluid turbulence Phys. Rev. Lett., 100 (2008), Article 054503
dc.relation.referencesGrassberger and Procaccia, 1984 P. Grassberger, I. Procaccia Dimensions and entropies of strange attractors from a fluctuating dynamics approach Physica D, 13 (1984), pp. 34-54
dc.relation.referencesHadwiger, 1957 H. Hadwiger Vorlesungen über Inhalt, Oberfläche und Isoperimetrie Springer Verlag, Berlin (1957)
dc.relation.referencesHe et al., 1998 X. He, X. Shan, G.D. Doolen Discrete Boltzmann equation model for nonideal gases Phys. Rev. E, 57 (1998), pp. R13-R16
dc.relation.referencesHölzer and Sommerfeld, 2009 A. Hölzer, M. Sommerfeld Lattice Boltzmann simulations to determine drag, lift and torque acting on non-spherical particles Comput. Fluids, 38 (2009), pp. 572-589
dc.relation.referencesHütter, 2003 M. Hütter Heterogeneity of colloidal particle networks analyzed by means of Minkowski functionals Phys. Rev. E, 68 (2003), Article 031404
dc.relation.referencesIreland et al., 2016 P.J. Ireland, A.D. Bragg, L.R. Collins The effect of Reynolds number on inertial particle dynamics in isotropic turbulence. Part 1. Simulations without gravitational effects J. Fluid Mech., 796 (2016), pp. 617-658
dc.relation.referencesJin et al., 2013 G. Jin, Y. Wang, J. Zhang, G. He Turbulent clustering of point particles and finite-sized particles in isotropic turbulent flows I&EC Res., 52 (2013), pp. 11294-11301
dc.relation.referencesDe Jong et al., 2010 J. De Jong, J.P.L.C. Salazar, S.H. Woodward, L.R. Collins, H. Meng Measurement of inertial particle clustering and relative velocity statistics in isotropic turbulence using holographic imaging Int. J. Multiphase Flow, 36 (2010), pp. 324-332
dc.relation.referencesKarnik, 2012 A. Karnik Direct Numerical Investigations of Dilute Dispersed Flows in Homogeneous Turbulence Ph.D. Thesis University of Southampton, UK (2012)
dc.relation.referencesKerscher et al., 1997 M. Kerscher, J. Schmalzing, J. Retzlaff, S. Borgani, T. Buchert, S. Gottlöber, V. Müller, M. Plionis, H. Wagner Minkowski functionals of Abell/ACO clusters MNRAS, 284 (1997), pp. 73-84
dc.relation.referencesKerscher, 2000 M. Kerscher Statistical analysis of large–scale structure in the Universe K.R. Mecke, D. Stoyan (Eds.), Statistical Physics and Spatial Statistics: The art of Analyzing and Modeling Spatial Structures and Pattern Formation, 554, Springer Verlag, Berlin (2000), pp. 36-71 Lecture Notes in Physics
dc.relation.referencesKinademariam et al., 2013 A.G. Kinademariam, C. Chan-Braun, T. Doychev, M. Uhlmann Direct numerical simulation of horizontal open channel flow with finite-size, heavy particles at low solid volume fraction New J. Phys., 15 (2013) paper 025231
dc.relation.referencesLadd, 1994ª A.J.C. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation J. Fluid Mech., 271 (1994), pp. 285-309
dc.relation.referencesLadd, 1994b A.J.C. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results J. Fluid Mech., 271 (1994), pp. 311-339
dc.relation.referencesLaín and Sommerfeld, 2008 S. Laín, M. Sommerfeld Euler/Lagrange computations of pneumatic conveying in a horizontal channel with different wall roughness Powd. Technol., 184 (2008), pp. 76-88
dc.relation.referencesLaín and Sommerfeld, 2012 S. Laín, M. Sommerfeld Numerical calculation of pneumatic conveying in horizontal channels and pipes: detailed analysis of conveying behavior Int. J. Multiphase Flow, 39 (2012), pp. 105-120
dc.relation.referencesLaín and Sommerfeld, 2013 S. Laín, M. Sommerfeld Characterization of pneumatic conveying systems using the Euler/Lagrange approach Powd. Technol., 235 (2013), pp. 764-782
dc.relation.referencesLiebovitch and Toth, 1989 L.S. Liebovitch, T.I. Toth A fast algorithm to determine fractal dimension by box counting Phys. Lett. A, 141 (1989), pp. 386-390
dc.relation.referencesLuo, 1998 L.-S. Luo Unified theory of lattice Boltzmann models for nonideal gases Phys. Rev. Lett., 81 (1998), pp. 1618-1621
dc.relation.referencesMann et al., 2002 J. Mann, S. Ott, H.L. Pécseli, J. Trulsen Predator-prey encounters in turbulent waters Phys. Rev. E, 65 (2002), Article 026304
dc.relation.referencesMattfeldt et al., 2007 T. Mattfeldt, D. Meschenmoser, U. Pantle, V. Schmidt Characterization of mammary gland tissue using joint estimators of Minkowski Functionals Image Anal. Stereol., 26 (2007), pp. 13-22
dc.relation.referencesMaxey and Riley, 1983 M.R. Maxey, J. Riley Equation of motion of a small rigid sphere in a non-uniform flow Phys. Fluids, 26 (1983), pp. 883-889
dc.relation.referencesMecke and Wagner, 1991 K.R. Mecke, H. Wagner Euler characteristic and related measures for random geometric sets J. Stat. Phys., 64 (1991), pp. 843-850
dc.relation.referencesMecke et al., 1994 K.R. Mecke, T. Buchert, H. Wagner Robust morphological measures for large– scale structure in the Universe Astron. Astrophys., 288 (1994), pp. 697-704
dc.relation.referencesMecke, 2000 K.R. Mecke Additivity, convexity, and beyond: applications of Minkowski functionals in statistical physics K.R. Mecke, D. Stoyan (Eds.), Statistical Physics and Spatial Statistics: The Art of Analyzing and Modeling Spatial Structures and Pattern FormationK.R. Mecke, D. Stoyan (Eds.), Lecture Notes in Physics, 554, Springer Verlag, Berlin (2000), pp. 111-184
dc.relation.referencesMonchaux et al., 2010 R. Monchaux, M. Bourgoin, A. Cartellier Preferential concentration of heavy particles: a Voronoï analysis Phys. Fluids, 22 (2010), Article 103304
dc.relation.referencesMonchaux et al., 2012 R. Monchaux, M. Bourgoin, A. Cartellier Analyzing preferential concentration and clustering of inertial particles in turbulence Int. J. Multiphase Flow, 40 (2012), pp. 1-18
dc.relation.referencesMonchaux, 2012 R. Monchaux Measuring concentration with Voronoï diagrams: the study of possible biases New J. Phys., 14 (2012), Article 095013
dc.relation.referencesMotter et al., 2003 A.E. Motter, Y.C. Lai, C. Grebogi Reactive dynamics of inertial particles in nonhyperbolic chaotic flows Phys. Rev. E, 68 (2003), Article 056307
dc.relation.referencesNing et al., 2009 W. Ning, R.D. Reitz, R. Diwakar, A.M. Lippert An Eulerian-Lagrangian spray and atomization model with improved turbulence modeling Atom. Sprays, 19 (2009), pp. 727-739
dc.relation.referencesOkabe et al., 2000 A. Okabe, B. Boots, K. Sugihara, S. Chiu Spatial Tessellations Wiley (2000)
dc.relation.referencesPiccioto et al., 2005 M. Piccioto, C. Marchioli, A. Soldati Characterization of near wall accumulation regions for inertial particles in turbulent boundary layers Phys. Fluids, 17 (2005), Article 098101
dc.relation.referencesQian et al., 1992 Y.H. Qian, D. d'Humières, P. Lallemand Lattice BGK models for Navier-Stokes equation Europhys. Lett., 17 (1992), pp. 479-484
dc.relation.referencesReade and Collins, 2000 W.C. Reade, L.R. Collins Effect of preferential concentration on turbulent collision rates Phys. Fluids, 12 (2000), pp. 2530-2540
dc.relation.referencesReeks, 1983 M.W. Reeks The transport of discrete particles in inhomogeneous turbulence J. Aerosol Sci., 14 (1983), pp. 729-739
dc.relation.referencesReuteler, 2012 J. Reuteler Microstructures and Transport Properties of Heterogeneous Materials Ph.D. Thesis Institute for Nonmetallic Inorganic Materials, Department of Materials, ETH ZurichSwitzerland (2012)
dc.relation.referencesRycroft, 2009 C.H. Rycroft Voro++: a three-dimensional Voronoi cell library in C++ Chaos, 19 (2009), Article 041111
dc.relation.referencesSafranov, 1969 V.S. Safranov Evolution of the Protoplanetary Cloud and Formation of the Earth and the Planets (1969) Nauka, NASA Tech. Transl. F677. NASA
dc.relation.referencesSantalo, 1976 L.A. Santalo Integral Geometry and Geometric Probability, 1976, Addison-Wesley, Reading, MA (1976)
dc.relation.referencesSarraille and DiFalco, 1992 J. Sarraille, P. DiFalco A Program for Estimating Fractal Dimension (1992) http://life.bio.sunysb.edu/morph/fd3.html visited on May 29, 2018
dc.relation.referencesSaw et al., 2008 E.W. Saw, R.A. Shaw, S. Ayyalasomayajula, P.Y. Chuang, A. Gylfason Inertial clustering of particles in high-Reynolds-number turbulence Phys. Rev. Lett., 100 (2008), Article 214501
dc.relation.referencesSchiller and Naumann, 1933 L. Schiller, A. Naumann Über die grundlegenden Berechnungen bei der Schwerkraftaufbe-reitung Z. Ver. Deut. Ing., 77 (1933), pp. 318-320
dc.relation.referencesSchmalzing and Kerscher, 2007 J. Schmalzing, M. Kerscher A Program for Calculating Minkowski Functionals of a Boolean Grain Model With Boundary Correction (2007) www.mathematik.uni-muenchen.de/∼kerscher/software/ visited on May 29, 2018
dc.relation.referencesSerra, 1982 J. Serra Image Analysis and Mathematical Morphology Academic Press, New York (1982)
dc.relation.referencesShaw et al., 1998 R.A. Shaw, W.C. Reade, L.R. Collins, J. Verlinde Preferential concentration of cloud droplets by turbulence: effects on the early evolution of cumulus cloud droplet spectra J. Atmos. Sci., 55 (1998), pp. 1965-1976
dc.relation.referencesShaw, 2003 R.A. Shaw Particle-turbulence interactions in atmospheric clouds Annu. Rev. Fluid Mech., 35 (2003), pp. 183-227
dc.relation.referencesSoldati and Marchioli, 2009 A. Soldati, C. Marchioli Physics and modelling of turbulent particle deposition and entrainment: review of a systematic study Int. J. Multiphase Flow, 35 (2009), pp. 827-839
dc.relation.referencesSommerfeld and Laín, 2009 M. Sommerfeld, S. Laín From elementary processes to the numerical prediction of industrial particle-laden flows’ Multiphase Sci. Technol., 21 (2009), pp. 123-140
dc.relation.referencesSquires and Eaton, 1991 K.D. Squires, J.K. Eaton Preferential concentration of particles by turbulence Phys. Fluids A, 3 (1991), pp. 1169-1178
dc.relation.referencesSundaram and Collins, 1997 S. Sundaram, L.R. Collins Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulations J. Fluid Mech., 335 (1997), pp. 75-109
dc.relation.referencesTagawa et al., 2012 T. Tagawa, J. Martínez-Mercado, V.N. Prakash, E. Calzavarinni, C. Sun, D. Lohse Three-dimensional Lagrangian Voronoï analysis for clustering of particles and bubbles in turbulence J. Fluid Mech., 693 (2012), pp. 201-215
dc.relation.referencesUhlmann and Doychev, 2014 M. Uhlmann, T. Doychev Sedimentation of a dilute suspension of rigid spheres at intermediate Galileo numbers: the effect of clustering upon the particle motion J. Fluid Mech., 752 (2014), pp. 310-348
dc.relation.referencesUhlmann and Chouippe, 2017 M. Uhlmann, A. Chouippe Clustering and preferential concentration of finite-size particles in forced homogeneous-isotropic turbulence J. Fluid Mech., 812 (2017), pp. 991-1023
dc.relation.referencesVosskuhle et al., 2014 M. Vosskuhle, A. Pumir, E. Lévêque, M. Wilkinson Prevalence of the sling effect for enhancing collision rates in turbulent suspensions J. Fluid Mech., 749 (2014), pp. 841-852
dc.relation.referencesWang et al., 2000 L.P. Wang, A.S. Wexler, Y. Zhou Statistical mechanical description and modelling of turbulent collision of inertial particles J. Fluid Mech., 415 (2000), pp. 117-153
dc.relation.referencesWang and Maxey, 1993 L.P. Wang, M.R. Maxey Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence J. Fluid Mech., 256 (1993), pp. 27-68
dc.relation.referencesWestphal et al., 1987 D.L. Westphal, O.B. Toon, T.N. Carlson A two-dimensional numerical investigation of the dynamics and microphysics of Saharan dust storms J. Geophys. Res., 92 (1987), pp. 3027-3049
dc.relation.referencesWilkinson and Mehlig, 2005 M. Wilkinson, B. Mehlig Caustics in turbulent aerosols Europhys. Lett., 71 (2005), pp. 186-192
dc.relation.referencesWo f-Gladrow, 2000 D.A. Wolf-Gladrow Lattice-Gas Cellular Automata and Lattice Boltzmann Models Springer Verlag, Berlin (2000)
dc.rights.accessrightsinfo:eu-repo/semantics/ClosedAccesseng
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalHomogeneous isotropic turbulenceeng
dc.subject.proposalInter-particle collisionseng
dc.subject.proposalParticle segregation and clusteringeng
dc.subject.proposalLattice Boltzmann Methodeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501eng
dc.type.contentTexteng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFeng
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2eng
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85eng
dc.type.versioninfo:eu-repo/semantics/publishedVersioneng


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Derechos Reservados - Universidad Autónoma de Occidente
Except where otherwise noted, this item's license is described as Derechos Reservados - Universidad Autónoma de Occidente