dc.contributor.author | Lain, Santiago | |
dc.contributor.author | Sommerfeld, Martín | |
dc.contributor.author | Ernst, Martín | |
dc.coverage.spatial | Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí | |
dc.date.accessioned | 2019-11-20T21:53:51Z | |
dc.date.available | 2019-11-20T21:53:51Z | |
dc.date.issued | 2019-05-24 | |
dc.identifier.issn | 0301-9322 | spa |
dc.identifier.uri | http://hdl.handle.net/10614/11556 | |
dc.description.abstract | This paper addresses the effect of inter-particle collisions on the segregation of non-settling inertial particles in homogeneous isotropic turbulence. For this purpose, direct numerical simulations of particles in statistically steady homogeneous isotropic turbulence have been performed by the lattice Boltzmann method considering inter-particle collisions. The preferential concentration of suspended particles is quantified using several clustering measures: segregation parameter, correlation dimension, radial distribution function, Voronoï diagrams and the topological tool of Minkowski functionals. Effects of particle inertia, inter-particle collisions and increasing volume fraction in the aforementioned measures are discussed. The obtained results show that collisions between particles have a remarkable influence on the formation of clusters. In particular, under locally dilute conditions, increasing particle volume fraction implies a moderate clustering intensification, but for locally dense conditions an increase of the mean inter-particle distance inside clusters can be envisaged as a consequence of the re-dispersing effect of inter-particle collisions | eng |
dc.format | application/pdf | eng |
dc.format.extent | 19 páginas | spa |
dc.language.iso | eng | eng |
dc.publisher | Elsevier | eng |
dc.rights | Derechos Reservados - Universidad Autónoma de Occidente | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | eng |
dc.title | Quantification of preferential concentration of colliding particles in a homogeneous isotropic turbulent flow | eng |
dc.type | Artículo de revista | spa |
dc.subject.armarc | Dinámica de fluidos | spa |
dc.subject.armarc | Fluid dynamics | eng |
dc.identifier.doi | https://doi.org/10.1016/j.ijmultiphaseflow.2019.05.007 | eng |
dc.relation.citationvolume | 117 | |
dc.relation.cites | Ernst, M., Sommerfeld, M., & Laín, S. (2019). Quantification of preferential concentration of colliding particles in a homogeneous isotropic turbulent flow. International Journal of Multiphase Flow, 117. 163-181. https://doi.org/10.1016/j.ijmultiphaseflow.2019.05.007 | eng |
dc.relation.ispartofjournal | International Journal of Multiphase Flow | eng |
dc.relation.references | Ayala et al., 2008ª O. Ayala, B. Rosa, L.-P. Wang, W.W. Grabowski Effects of turbulence on the geometric collision rate of sedimenting droplets: part 1. Results from direct numerical simulation New J. Phys., 10 (2008), Article 075015 | |
dc.relation.references | Ayala et al., 2008b A. Ayala, B. Rosa, L.-P. Wang Effects of turbulence on the geometric collision rate of sedimenting droplets: part 2. Theory and parameterization New J. Phys., 10 (2008), Article 075016 | |
dc.relation.references | Baker et al., 2017 L. Baker, A. Frankel, A. Mani, F. Coletti Coherent clusters of inertial particles in homogeneous turbulence J. Fluid Mech., 833 (2017), pp. 364-398 | |
dc.relation.references | Bec et al., 2005 J. Bec, A. Celani, M Cencini, S. Musacchio Clustering and collisions of heavy particle in random smooth flows Phys. Fluids, 17 (2005), Article 073301 | |
dc.relation.references | Bec et al., 2007 J. Bec, L. Biferale, M. Cencini, A. Lanotte, S. Musacchio, F. Toschi Heavy particle concentration in turbulence at dissipative and inertial scales Phys. Rev. Lett., 98 (2007), Article 084502 | |
dc.relation.references | Bhatnagar et al., 1954 P.L. Bhatnagar, E.P. Gross, M.A. Krook Model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems Phys. Rev., 94 (1954), pp. 511-525 | |
dc.relation.references | Bragg et al., 2015 A.D. Bragg, P.J. Ireland, L.R. Collins Mechanisms for the clustering of inertial particles in the inertial range of isotropic turbulence Phys. Rev. E, 92 (2015), Article 023029 | |
dc.relation.references | Cahyadi et al., 2017 A. Cahyadi, A. Anantharaman, S. Yang, S.B. Reddy Karri, J.G. Findlay, RA. Cocco, J.W. Chew Review of cluster characteristics in circulating fluidized bed (CFB) risers Chem. Eng. Sci., 158 (2017), pp. 70-95 | |
dc.relation.references | Calzavarini et al., 2008 E. Calzavarini, M. Kerscher, D. Lohse, F. Toschi Dimensionality and morphology of particle and bubble clusters in turbulent flow J. Fluid Mech., 607 (2008), pp. 13-24 | |
dc.relation.references | Carlos Varas et al., 2017 A.E. Carlos Varas, E.A.J.F. Peters, J.A.M. Kuipers CFD-DEM simulations and experimental validation of clustering phenomena and riser hydrodynamics Chem. Eng. Sci., 169 (2017), pp. 246-258 | |
dc.relation.references | Chen et al., 2006 L. Chen, S. Goto, J.C. Vassilicos Turbulent clustering of stagnation points and inertial particles J. Fluid Mech., 553 (2006), pp. 143-154 | |
dc.relation.references | Cihonski et al., 2013 A. Cihonski, J.R. Finn, S.V. Apte, R.A. Gore A mean shift algorithm for cluster identification in particle-laden turbulent flows Proc. 8th Int. Conf. on Multiphase Flow ICMF 2013, Jeju, Korea (2013) May 26-31, 2013 | |
dc.relation.references | Coleman and Vassilicos, 2009 S.W. Coleman, J.C. Vassilicos A unified sweep-stick mechanism to explain particle clustering in two-and three-dimensional homogeneous, isotropic turbulence Phys. Fluids, 21 (2009), Article 113301 | |
dc.relation.references | Comte-Bellot and Corrsin, 1971 G. Comte-Bellot, S. Corrsin Simple Eulerian time correlation of full and narrow-band velocity signals in grid-generated, ’isotropic’ turbulence J. Fluid Mech., 48 (1971), pp. 273-337 | |
dc.relation.references | Crowe, 1981 C.T. Crowe On the relative importance of particle-particle collisions in gas-particle flows Proc. of the Conf. on Gas Borne Particles (1981), pp. 135-137 Paper C78/81 | |
dc.relation.references | Dietzel et al., 2016 M. Dietzel, M. Ernst, M. Sommerfeld Application of the Lattice-Boltzmann method for particle-laden flows: point-particles and fully resolved particles Flow Turbul. Combust., 97 (2016), pp. 539-570 | |
dc.relation.references | Eaton and Fessler, 1994 J.K. Eaton, J.R. Fessler Preferential concentration of particles by turbulence Int. J. Multiphase Flow, 20 (1994), pp. 169-209 | |
dc.relation.references | Ernst and Sommerfeld, 2012 M. Ernst, M. Sommerfeld On the volume fraction effects of inertial colliding particles in homogeneous isotropic turbulence ASME J. Fluids Eng., 134 (031302) (2012) | |
dc.relation.references | Eswaran and Pope, 1988 V. Eswaran, S.B. Pope An examination of forcing in direct numerical simulations of turbulence Comput. Fluids, 16 (1988), pp. 257-278 | |
dc.relation.references | Falkovich et al., 2002 G. Falkovich, A. Fouxon, M.G. Stepanov Acceleration of rain initiation by cloud turbulence Nature, 419 (2002), pp. 151-154 | |
dc.relation.references | Fedé and Simonin, 2006 P. Fedé, O. Simonin Numerical study of the subgrid fluid turbulence effects on the statistics of heavy colliding particles Phys. Fluids, 18 (2006) Article No. 045103 | |
dc.relation.references | Fede and Simonin, 2010 P. Fede, O. Simonin Effect of particle-particle collisions on the spatial distribution of inertial particles suspended in homogeneous isotropic turbulent flows Turbulence and Interactions. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 110, Springer (2010), pp. 119-125 | |
dc.relation.references | Ferenc and Néda, 2007 J.S. Ferenc, Z. Néda On the size distribution of Poisson Voronoï cells Physica A, 385 (2007), pp. 518-526 | |
dc.relation.references | Fessler et al., 1994 J.R. Fessler, J.D. Kulick, J.K. Eaton Preferential concentration of heavy particles in a turbulent channel flow Phys. Fluids, 6 (1994), pp. 3742-3749 | |
dc.relation.references | Février et al., 2001 P. Février, O. Simonin, D. Legendre Particle dispersion and preferential concentration dependence on turbulent Reynolds number from direct and large-eddy simulations of isotropic homogeneous turbulence Proc. 4th International Conference on Multiphase Flow, New Orleans, Louisiana (2001), pp. 1-12 | |
dc.relation.references | Février et al., 2005 P. Février, O. Simonin, K.D. Squires Partitioning of particle velocities in gas–solid turbulent flows into a continuous field and a spatially uncorrelated random distribution: theoretical formalism and numerical study J. Fluid Mech., 533 (2005), pp. 1-46 | |
dc.relation.references | Gosman and loannides, 1983 A.D. Gosman, E. loannides Aspects of computer simulation of liquid-fueled combustors J. Energy, 7 (1983), pp. 482-490 | |
dc.relation.references | Goto and Vassilicos, 2006 S. Goto, J.C. Vassilicos Self-similar clustering of inertial particles and zero-acceleration points if fully developed two-dimensional turbulence Phys. Fluids, 18 (2006), Article 115103 | |
dc.relation.references | Goto and Vassilicos, 2008 S. Goto, J.C. Vassilicos Sweep-stick mechanism of heavy particle clustering in fluid turbulence Phys. Rev. Lett., 100 (2008), Article 054503 | |
dc.relation.references | Grassberger and Procaccia, 1984 P. Grassberger, I. Procaccia Dimensions and entropies of strange attractors from a fluctuating dynamics approach Physica D, 13 (1984), pp. 34-54 | |
dc.relation.references | Hadwiger, 1957 H. Hadwiger Vorlesungen über Inhalt, Oberfläche und Isoperimetrie Springer Verlag, Berlin (1957) | |
dc.relation.references | He et al., 1998 X. He, X. Shan, G.D. Doolen Discrete Boltzmann equation model for nonideal gases Phys. Rev. E, 57 (1998), pp. R13-R16 | |
dc.relation.references | Hölzer and Sommerfeld, 2009 A. Hölzer, M. Sommerfeld Lattice Boltzmann simulations to determine drag, lift and torque acting on non-spherical particles Comput. Fluids, 38 (2009), pp. 572-589 | |
dc.relation.references | Hütter, 2003 M. Hütter Heterogeneity of colloidal particle networks analyzed by means of Minkowski functionals Phys. Rev. E, 68 (2003), Article 031404 | |
dc.relation.references | Ireland et al., 2016 P.J. Ireland, A.D. Bragg, L.R. Collins The effect of Reynolds number on inertial particle dynamics in isotropic turbulence. Part 1. Simulations without gravitational effects J. Fluid Mech., 796 (2016), pp. 617-658 | |
dc.relation.references | Jin et al., 2013 G. Jin, Y. Wang, J. Zhang, G. He Turbulent clustering of point particles and finite-sized particles in isotropic turbulent flows I&EC Res., 52 (2013), pp. 11294-11301 | |
dc.relation.references | De Jong et al., 2010 J. De Jong, J.P.L.C. Salazar, S.H. Woodward, L.R. Collins, H. Meng Measurement of inertial particle clustering and relative velocity statistics in isotropic turbulence using holographic imaging Int. J. Multiphase Flow, 36 (2010), pp. 324-332 | |
dc.relation.references | Karnik, 2012 A. Karnik Direct Numerical Investigations of Dilute Dispersed Flows in Homogeneous Turbulence Ph.D. Thesis University of Southampton, UK (2012) | |
dc.relation.references | Kerscher et al., 1997 M. Kerscher, J. Schmalzing, J. Retzlaff, S. Borgani, T. Buchert, S. Gottlöber, V. Müller, M. Plionis, H. Wagner Minkowski functionals of Abell/ACO clusters MNRAS, 284 (1997), pp. 73-84 | |
dc.relation.references | Kerscher, 2000 M. Kerscher Statistical analysis of large–scale structure in the Universe K.R. Mecke, D. Stoyan (Eds.), Statistical Physics and Spatial Statistics: The art of Analyzing and Modeling Spatial Structures and Pattern Formation, 554, Springer Verlag, Berlin (2000), pp. 36-71 Lecture Notes in Physics | |
dc.relation.references | Kinademariam et al., 2013 A.G. Kinademariam, C. Chan-Braun, T. Doychev, M. Uhlmann Direct numerical simulation of horizontal open channel flow with finite-size, heavy particles at low solid volume fraction New J. Phys., 15 (2013) paper 025231 | |
dc.relation.references | Ladd, 1994ª A.J.C. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation J. Fluid Mech., 271 (1994), pp. 285-309 | |
dc.relation.references | Ladd, 1994b A.J.C. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results J. Fluid Mech., 271 (1994), pp. 311-339 | |
dc.relation.references | Laín and Sommerfeld, 2008 S. Laín, M. Sommerfeld Euler/Lagrange computations of pneumatic conveying in a horizontal channel with different wall roughness Powd. Technol., 184 (2008), pp. 76-88 | |
dc.relation.references | Laín and Sommerfeld, 2012 S. Laín, M. Sommerfeld Numerical calculation of pneumatic conveying in horizontal channels and pipes: detailed analysis of conveying behavior Int. J. Multiphase Flow, 39 (2012), pp. 105-120 | |
dc.relation.references | Laín and Sommerfeld, 2013 S. Laín, M. Sommerfeld Characterization of pneumatic conveying systems using the Euler/Lagrange approach Powd. Technol., 235 (2013), pp. 764-782 | |
dc.relation.references | Liebovitch and Toth, 1989 L.S. Liebovitch, T.I. Toth A fast algorithm to determine fractal dimension by box counting Phys. Lett. A, 141 (1989), pp. 386-390 | |
dc.relation.references | Luo, 1998 L.-S. Luo Unified theory of lattice Boltzmann models for nonideal gases Phys. Rev. Lett., 81 (1998), pp. 1618-1621 | |
dc.relation.references | Mann et al., 2002 J. Mann, S. Ott, H.L. Pécseli, J. Trulsen Predator-prey encounters in turbulent waters Phys. Rev. E, 65 (2002), Article 026304 | |
dc.relation.references | Mattfeldt et al., 2007 T. Mattfeldt, D. Meschenmoser, U. Pantle, V. Schmidt Characterization of mammary gland tissue using joint estimators of Minkowski Functionals Image Anal. Stereol., 26 (2007), pp. 13-22 | |
dc.relation.references | Maxey and Riley, 1983 M.R. Maxey, J. Riley Equation of motion of a small rigid sphere in a non-uniform flow Phys. Fluids, 26 (1983), pp. 883-889 | |
dc.relation.references | Mecke and Wagner, 1991 K.R. Mecke, H. Wagner Euler characteristic and related measures for random geometric sets J. Stat. Phys., 64 (1991), pp. 843-850 | |
dc.relation.references | Mecke et al., 1994 K.R. Mecke, T. Buchert, H. Wagner Robust morphological measures for large– scale structure in the Universe Astron. Astrophys., 288 (1994), pp. 697-704 | |
dc.relation.references | Mecke, 2000 K.R. Mecke Additivity, convexity, and beyond: applications of Minkowski functionals in statistical physics K.R. Mecke, D. Stoyan (Eds.), Statistical Physics and Spatial Statistics: The Art of Analyzing and Modeling Spatial Structures and Pattern FormationK.R. Mecke, D. Stoyan (Eds.), Lecture Notes in Physics, 554, Springer Verlag, Berlin (2000), pp. 111-184 | |
dc.relation.references | Monchaux et al., 2010 R. Monchaux, M. Bourgoin, A. Cartellier Preferential concentration of heavy particles: a Voronoï analysis Phys. Fluids, 22 (2010), Article 103304 | |
dc.relation.references | Monchaux et al., 2012 R. Monchaux, M. Bourgoin, A. Cartellier Analyzing preferential concentration and clustering of inertial particles in turbulence Int. J. Multiphase Flow, 40 (2012), pp. 1-18 | |
dc.relation.references | Monchaux, 2012 R. Monchaux Measuring concentration with Voronoï diagrams: the study of possible biases New J. Phys., 14 (2012), Article 095013 | |
dc.relation.references | Motter et al., 2003 A.E. Motter, Y.C. Lai, C. Grebogi Reactive dynamics of inertial particles in nonhyperbolic chaotic flows Phys. Rev. E, 68 (2003), Article 056307 | |
dc.relation.references | Ning et al., 2009 W. Ning, R.D. Reitz, R. Diwakar, A.M. Lippert An Eulerian-Lagrangian spray and atomization model with improved turbulence modeling Atom. Sprays, 19 (2009), pp. 727-739 | |
dc.relation.references | Okabe et al., 2000 A. Okabe, B. Boots, K. Sugihara, S. Chiu Spatial Tessellations Wiley (2000) | |
dc.relation.references | Piccioto et al., 2005 M. Piccioto, C. Marchioli, A. Soldati Characterization of near wall accumulation regions for inertial particles in turbulent boundary layers Phys. Fluids, 17 (2005), Article 098101 | |
dc.relation.references | Qian et al., 1992 Y.H. Qian, D. d'Humières, P. Lallemand Lattice BGK models for Navier-Stokes equation Europhys. Lett., 17 (1992), pp. 479-484 | |
dc.relation.references | Reade and Collins, 2000 W.C. Reade, L.R. Collins Effect of preferential concentration on turbulent collision rates Phys. Fluids, 12 (2000), pp. 2530-2540 | |
dc.relation.references | Reeks, 1983 M.W. Reeks The transport of discrete particles in inhomogeneous turbulence J. Aerosol Sci., 14 (1983), pp. 729-739 | |
dc.relation.references | Reuteler, 2012 J. Reuteler Microstructures and Transport Properties of Heterogeneous Materials Ph.D. Thesis Institute for Nonmetallic Inorganic Materials, Department of Materials, ETH ZurichSwitzerland (2012) | |
dc.relation.references | Rycroft, 2009 C.H. Rycroft Voro++: a three-dimensional Voronoi cell library in C++ Chaos, 19 (2009), Article 041111 | |
dc.relation.references | Safranov, 1969 V.S. Safranov Evolution of the Protoplanetary Cloud and Formation of the Earth and the Planets (1969) Nauka, NASA Tech. Transl. F677. NASA | |
dc.relation.references | Santalo, 1976 L.A. Santalo Integral Geometry and Geometric Probability, 1976, Addison-Wesley, Reading, MA (1976) | |
dc.relation.references | Sarraille and DiFalco, 1992 J. Sarraille, P. DiFalco A Program for Estimating Fractal Dimension (1992) http://life.bio.sunysb.edu/morph/fd3.html visited on May 29, 2018 | |
dc.relation.references | Saw et al., 2008 E.W. Saw, R.A. Shaw, S. Ayyalasomayajula, P.Y. Chuang, A. Gylfason Inertial clustering of particles in high-Reynolds-number turbulence Phys. Rev. Lett., 100 (2008), Article 214501 | |
dc.relation.references | Schiller and Naumann, 1933 L. Schiller, A. Naumann Über die grundlegenden Berechnungen bei der Schwerkraftaufbe-reitung Z. Ver. Deut. Ing., 77 (1933), pp. 318-320 | |
dc.relation.references | Schmalzing and Kerscher, 2007 J. Schmalzing, M. Kerscher A Program for Calculating Minkowski Functionals of a Boolean Grain Model With Boundary Correction (2007) www.mathematik.uni-muenchen.de/∼kerscher/software/ visited on May 29, 2018 | |
dc.relation.references | Serra, 1982 J. Serra Image Analysis and Mathematical Morphology Academic Press, New York (1982) | |
dc.relation.references | Shaw et al., 1998 R.A. Shaw, W.C. Reade, L.R. Collins, J. Verlinde Preferential concentration of cloud droplets by turbulence: effects on the early evolution of cumulus cloud droplet spectra J. Atmos. Sci., 55 (1998), pp. 1965-1976 | |
dc.relation.references | Shaw, 2003 R.A. Shaw Particle-turbulence interactions in atmospheric clouds Annu. Rev. Fluid Mech., 35 (2003), pp. 183-227 | |
dc.relation.references | Soldati and Marchioli, 2009 A. Soldati, C. Marchioli Physics and modelling of turbulent particle deposition and entrainment: review of a systematic study Int. J. Multiphase Flow, 35 (2009), pp. 827-839 | |
dc.relation.references | Sommerfeld and Laín, 2009 M. Sommerfeld, S. Laín From elementary processes to the numerical prediction of industrial particle-laden flows’ Multiphase Sci. Technol., 21 (2009), pp. 123-140 | |
dc.relation.references | Squires and Eaton, 1991 K.D. Squires, J.K. Eaton Preferential concentration of particles by turbulence Phys. Fluids A, 3 (1991), pp. 1169-1178 | |
dc.relation.references | Sundaram and Collins, 1997 S. Sundaram, L.R. Collins Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulations J. Fluid Mech., 335 (1997), pp. 75-109 | |
dc.relation.references | Tagawa et al., 2012 T. Tagawa, J. Martínez-Mercado, V.N. Prakash, E. Calzavarinni, C. Sun, D. Lohse Three-dimensional Lagrangian Voronoï analysis for clustering of particles and bubbles in turbulence J. Fluid Mech., 693 (2012), pp. 201-215 | |
dc.relation.references | Uhlmann and Doychev, 2014 M. Uhlmann, T. Doychev Sedimentation of a dilute suspension of rigid spheres at intermediate Galileo numbers: the effect of clustering upon the particle motion J. Fluid Mech., 752 (2014), pp. 310-348 | |
dc.relation.references | Uhlmann and Chouippe, 2017 M. Uhlmann, A. Chouippe Clustering and preferential concentration of finite-size particles in forced homogeneous-isotropic turbulence J. Fluid Mech., 812 (2017), pp. 991-1023 | |
dc.relation.references | Vosskuhle et al., 2014 M. Vosskuhle, A. Pumir, E. Lévêque, M. Wilkinson Prevalence of the sling effect for enhancing collision rates in turbulent suspensions J. Fluid Mech., 749 (2014), pp. 841-852 | |
dc.relation.references | Wang et al., 2000 L.P. Wang, A.S. Wexler, Y. Zhou Statistical mechanical description and modelling of turbulent collision of inertial particles J. Fluid Mech., 415 (2000), pp. 117-153 | |
dc.relation.references | Wang and Maxey, 1993 L.P. Wang, M.R. Maxey Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence J. Fluid Mech., 256 (1993), pp. 27-68 | |
dc.relation.references | Westphal et al., 1987 D.L. Westphal, O.B. Toon, T.N. Carlson A two-dimensional numerical investigation of the dynamics and microphysics of Saharan dust storms J. Geophys. Res., 92 (1987), pp. 3027-3049 | |
dc.relation.references | Wilkinson and Mehlig, 2005 M. Wilkinson, B. Mehlig Caustics in turbulent aerosols Europhys. Lett., 71 (2005), pp. 186-192 | |
dc.relation.references | Wo
f-Gladrow, 2000 D.A. Wolf-Gladrow Lattice-Gas Cellular Automata and Lattice Boltzmann Models Springer Verlag, Berlin (2000) | |
dc.rights.accessrights | info:eu-repo/semantics/ClosedAccess | eng |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.subject.proposal | Homogeneous isotropic turbulence | eng |
dc.subject.proposal | Inter-particle collisions | eng |
dc.subject.proposal | Particle segregation and clustering | eng |
dc.subject.proposal | Lattice Boltzmann Method | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | eng |
dc.type.content | Text | eng |
dc.type.driver | info:eu-repo/semantics/article | eng |
dc.type.redcol | http://purl.org/redcol/resource_type/ARTREF | eng |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | eng |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | eng |
dc.type.version | info:eu-repo/semantics/publishedVersion | eng |