Show simple item record

dc.contributor.authorMoreno-Chuquen, Ricardospa
dc.contributor.authorGonzález Palomino, Gabrielspa
dc.contributor.authorObando Ceron, Johan Samirspa
dc.coverage.spatialUniversidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundíspa
dc.date.accessioned2019-11-18T20:19:34Zspa
dc.date.available2019-11-18T20:19:34Zspa
dc.date.issued2019spa
dc.identifier.citationMoreno, R., Obando, J., & Gonzalez, G. (2019). An integrated OPF dispatching model with wind power and demand response for day-ahead markets. International Journal of Electrical & Computer Engineering (2088-8708), 9spa
dc.identifier.issn2088-8708spa
dc.identifier.urihttp://hdl.handle.net/10614/11522spa
dc.identifier.urihttp://ijece.iaescore.com/index.php/IJECE/article/view/15173spa
dc.description.abstractIn the day-ahead dispatching of network-constrained electricity markets, renewable energy and distributed resourcesare dispatched together with conventional generation. The uncertainty and volatility associated torenewable resources represents a new paradigm to be faced for power system operation. Moreover, in various electricity markets there are mechanisms to allow the demand participation through demand response (DR) strategies. Under operational and economic restrictions, the operator each day, or even in intra-day markets, dispatchs an optimal power flow tofind a feasible state of operation. The operation decisions in power markets use an optimal power flow considering unit commitment to dispatch economically generation and DR resources under security restrictions. This paper constructs a model to include demand response in the optimal power flow under wind power uncertainty. The model is formulated as a mixed-integer linear quadratic problem and evaluated through Monte-Carlo simulations. A large number of scenarios around a trajectory bid captures the uncertainty in wind power forecasting. The proposedintegrated OPFmodel is tested on the standard IEEE 39-bus systemeng
dc.formatapplication/pdfspa
dc.format.extentpáginas 2794-2802spa
dc.language.isoengeng
dc.publisherInstitute of Advanced Engineering and Scienceeng
dc.relationInternational Journal of Electrical and Computer Engineering, volumen 9, número 4, paginas 2794-2802, (august, 2019)
dc.rightsDerechos Reservados - Universidad Autónoma de Occidentespa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.sourceinstname:Universidad Autónoma de Occidentespa
dc.sourcereponame:Repositorio Institucional UAOspa
dc.subjectDemand responseeng
dc.subjectElectricity marketseng
dc.subjectMonte-Carlo simulationseng
dc.subjectOptimal power flow (OPF)eng
dc.subjectWind powereng
dc.titleAn integrated OPF dispatching model with wind power and demand response for day-ahead marketseng
dc.typeArtículo de revistaspa
dc.subject.lembPower resourceseng
dc.subject.lembDistribución de energía espectralspa
dc.subject.lembRecursos energéticosspa
dc.subject.armarcRenewable energy sourceseng
dc.subject.armarcRecursos energéticos renovablesspa
dc.identifier.doihttp://doi.org/10.11591/ijece.v9i4.pp2794-2802spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.source.bibliographiccitationJ. M. Morales,et al.,“Short-term trading for a wind power producer,”IEEE Transactions on Power Systems,vol/issue:25(1),pp. 554-564,2010spa
dc.source.bibliographiccitationS. S. Sakthi, et al., “Wind Integrated Thermal Unit Commitment Solution using Grey Wolf Optimizer,”International Journal of Electrical and Computer Engineering (IJECE), vol/issue:7(5), pp. 2309-2320, 2017spa
dc.source.bibliographiccitationI.M. Wartana, et al., “Optimal Integration of the Renewable Energy to the Grid by Considering Small Signal Stability Constraint,”International Journal of Electrical and Computer Engineering (IJECE), vol/issue:7(5),pp. 2329-2337, 2017spa
dc.source.bibliographiccitationC.L. SuandD. Kirschen,“Quantifying the effect of demand response on electricity markets,”IEEE Transactions on Power Systems,vol/issue:24(3),pp. 1199-1207,2009spa
dc.source.bibliographiccitationR. A. Jabr and B. C. Pal, “Intermittent wind generation in optimal power flow dispatching,” IET Gener. Transm. Distrib, vol/issue:3(1), pp. 66-74, 2009spa
dc.source.bibliographiccitationH. Zhang and P. Li, “Probabilistic analysis for optimal power flow under uncertainty,” IET Gener. Transm. Distrib, vol/issue:4(5), pp. 553-561, 2010spa
dc.source.bibliographiccitationR. Entriken, et al., “Stochastic optimal power flow insystems with wind power,” Proc. IEEE Power Energy Soc. Gen. Meeting, San Diego, CA, USA, pp. 1-5, 2011spa
dc.source.bibliographiccitationC. S. Saunders, “Point estimate method addressing correlated wind power for probabilistic optimal power flow,” IEEE Trans. Power Syst., vol/issue:29(3), pp. 1045-1054, 2014spa
dc.source.bibliographiccitationA. Papavasiliou and S. S. Oren, “Multiarea stochastic unit commitment for high wind penetration in a transmission constrainednetwork,” Oper. Res., vol/issue:61(3), pp. 578-592, 2013spa
dc.source.bibliographiccitationF. Bouffard and F. D. Galiana, “Stochastic security for operations planning with significant wind power generation,” IEEE Trans. Power Syst., vol/issue:23(2), pp. 306-316, 2008spa
dc.source.bibliographiccitationJ. M. Morales, et al., “Economic valuation of reserves in power systems withhigh penetration of wind power,” IEEE Trans. Power Syst., vol/issue:24(2), pp. 900-910, 2009spa
dc.source.bibliographiccitationA. Papavasiliou, et al., “Reserve requirements for wind power integration: A scenario-based stochastic programming framework,” IEEE Trans. Power Syst., vol/issue:26(4), pp. 2197-2206, 2011spa
dc.source.bibliographiccitationB. BanhtasitandC. S. Dechanupaprittha, “Optimal Generation Scheduling of Power System for Maximum Renewable Energy Harvesting and Power Losses Minimization,”International Journal of Electrical and Computer Engineering (IJECE), vol/issue:8(4), pp. 1954-1966, 2018spa
dc.source.bibliographiccitationS. KimandS. R. Salkut, “Optimal power flow based congestion management using enhanced genetic algorithms,” International Journal of Electrical and Computer Engineering (IJECE), vol/issue:9(2), pp. 875-883, 2019spa
dc.source.bibliographiccitationM. Kefayati and R. Baldick, “Harnessing demand flexibility to match renewable production using localized policies,” Proc. 50th Annu. Allerton Conf. Commun. Control Comput. (Allerton), Monticello, IL, USA, pp. 1105-1109, 2012spa
dc.source.bibliographiccitationU.S. Energy Information Administration (EIA),“Estimated U.S. Residential Electricty Consumption by End-Use,”2010. Available: http://www.eia.gov/tools/faqs/faq.cfm?id=96&t=3spa
dc.source.bibliographiccitationM. Arroyoand A. J. Conejo, “Multiperiod auction for a pool-based electricity market,” IEEE Trans. Power Syst., vol. 17, pp. 1225-1231, 2002spa
dc.source.bibliographiccitationJ. Wang, et al., “Demand-side reserve offers in joint energy/reserve electricity markets,” IEEE Trans. Power Syst., vol. 18, pp. 1300-1306, 2003spa
dc.source.bibliographiccitationA. Borghetti, et al., “Auctions with explicit demand sidebidding in competitive electricity markets,” The Next Generation ofElectric Power Unit Commitment Models. Norwell, MA: Kluwer, pp. 53-74, 2001spa
dc.source.bibliographiccitationO. Ma,et al., “Demand Response for Ancillary Services,” IEEE Trans. SmartGrid, vol. 4, pp. 1988-1995,2013spa
dc.source.bibliographiccitationU. Helman,et al., “Operational requirements and generation fleet capability at 20% RPS,” CAISO, 2010. Available: http://www.uwig.org/spa
dc.source.bibliographiccitationG.Lazaros, et al.,“The role of aggregators in smart grid demand response markets,”IEEE Journal on Selected Areas in Communications,vol/issue: 31(7), pp.1247-1257, 2013spa
dc.source.bibliographiccitationThe GUROBI Manual,2017. Available: https://www.gurobi.com/documentation/7.5/refman/index.htmlspa
dc.source.bibliographiccitationMatpowerOptimal Scheduling Tool (MOST) package,2017. Available: http://www.pserc.cornell.edu/ matpower/manual.pdfspa
dc.source.bibliographiccitationR. Z. Miñano, et al., “An OPF Methodology to Ensure Small-Signal Stability,” IEEE Trans. Power System, vol/issue:26(3), 2011spa
dc.source.bibliographiccitationT. Dai, et al., “Real-time Optimal Participation of Wind Power in an Electricity Market,” IEEE Innovative Smart Grid Technologies Conf.,Tianjin, China, 2012spa
dc.source.bibliographiccitationS. Jang, et al., “A new network partition method using the sensitive of marginal cost under network congestion,” IEEE Power Engineering Society Summer Meeting, 2001spa


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Derechos Reservados - Universidad Autónoma de Occidente
Except where otherwise noted, this item's license is described as Derechos Reservados - Universidad Autónoma de Occidente