Show simple item record

dc.contributor.authorCabrera López, John Jairospa
dc.contributor.authorVelasco Medina, Jaimespa
dc.coverage.spatialUniversidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundíspa
dc.identifier.citationCabrera-López, J. J., & Velasco-Medina, J. (2019). Structured Approach and Impedance Spectroscopy Microsystem for Fractional-Order Electrical Characterization of Vegetable Tissues. IEEE Transactions on Instrumentation and Measurement.eng
dc.identifier.issn1557-9662 (en línea)spa
dc.identifier.issn0018-9456 (impresa)spa
dc.description.abstractAccuracy measurement of the impedance over a spread spectrum is the foundation of impedance spectroscopy (IS) technique, which has been recently proposed as a simple noninvasive technique for impedance spectrum measurement of a biological material (BM). This measurement is used to develop the equivalent electrical model (EEM) and to perform electrical characterization of the BM. In this paper, we propose a suitable approach for high-reliability electrical characterization of vegetable tissues by using a high-accuracy impedance spectrum measurement based on a structured algorithm, a flexible IS microsystem, and fractional-order (FO) models. The designed microsystem uses minimal discrete circuits and a programmable mixed-signal circuit, and it is validated by using EEMs of integer-order (IO), that is, the IS measures were compared with the simulation results. Also, impedance spectrum measures of vegetable tissues are carried out using the microsystem. In this case, five EEMs described by IO and FO differential equations are used to perform the parametric optimization using the Nelder-Mead ``simplex'' algorithm. Taking into account the obtained simulation results and experimental measures, it is possible to mention that the structured approach is suitable for applications that require to measure the bioimpedance over a spread spectrum, such as electrical IS (EIS) and electrical impedance tomography (EIT)eng
dc.format.extentpáginas 1-10spa
dc.publisherInstitute of Electrical and Electronics Engineees, IEEEeng
dc.relationIEEE Transactions on Instrumentation and Measurement, páginas 1-10, (april, 2019)
dc.rightsDerechos Reservados - Universidad Autónoma de Occidentespa
dc.sourceinstname:Universidad Autónoma de Occidentespa
dc.sourcereponame:Repositorio Institucional UAOspa
dc.subjectFractional calculuseng
dc.subjectImpedance spectroscopy (IS)eng
dc.subjectParameter estimationeng
dc.subjectSystem implementationeng
dc.titleStructured approach and impedance spectroscopy microsystem for fractional-order electrical characterization of vegetable tissueseng
dc.typeArtículo de revistaspa
dc.subject.lembElectrochemical analysiseng
dc.subject.lembAnálisis electroquímicospa
dc.subject.armarcHigh resolution spectroscopyeng
dc.subject.armarcEspectroscopía de alta resoluciónspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.source.bibliographiccitationS. Grimnes and O. G. Martinsen, Bioimpedance Bioelectricity Basics, vol. 1, 3rd ed. New York, NY, USA: Oslo Elsevier, 2015spa
dc.source.bibliographiccitationD. E. Khaled, N. N. Castellano, J. A. Gazquez, R. M. G. Salvador, and F. Manzano-Agugliaro, “Cleaner quality control system using bioimpedance methods: A review for fruits and vegetables,” J. Clean. Prod., vol. 140, pp. 1749–1762, Jan. 2017spa
dc.source.bibliographiccitationT. K. Bera, S. Bera, A. Chowdhury, D. Ghoshal, and B. Chakraborty, “Electrical impedance spectroscopy (EIS) based fruit characterization: A technical review,” in Proc. Comput., Commun. Elect. Technol., Mar. 2017, pp. 279–288spa
dc.source.bibliographiccitationD. Khaled, N. Novas, J. A. Gazquez, R. M. Garcia, and F. Manzano-Agugliaro, “Fruit and vegetable quality assessment via dielectric sensing,” Sensors, vol. 15, no. 7, pp. 15363–15397, Jun. 2015spa
dc.source.bibliographiccitationB. Panikuttira and C. P. O’Donnell, “Chapter 40-process analytical technology for the fruit juice industry,” Fruit Juices, pp. 835–847, Nov. 2018spa
dc.source.bibliographiccitationH. Ko, T. Lee, J.-H. Kim, J.-A. Park, and J.-P. Kim, “Ultralow-power bioimpedance IC with intermediate frequency shifting chopper,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 63, no. 3, pp. 259–263, Mar. 2015spa
dc.source.bibliographiccitationJ. Juansah, I. W. Budiastra, K. Dahlan, and K. B. Seminar, “Electrical behavior of garut citrus fruits during ripening changes in resistance and capacitance models of internal fruits,” Int. J. Eng. Technol., vol. 12, no. 4, pp. 1–8, Aug. 2012spa
dc.source.bibliographiccitationN. D. Semkin, K. E. Voronov, A. M. Telegin, and A. S. Vidmanov, “Bioimpedance research instrumentation system for the BION-M1 spacecraft,” Meas. Techn., vol. 57, no. 10, pp. 1209–1212, Jan. 2015spa
dc.source.bibliographiccitationF. Clemente, M. Romano, P. Bifulco, and M. Cesarelli, “EIS measurements for characterization of muscular tissue by means of equivalent electrical parameters,” Measurement, vol. 58, pp. 476–482, Dec. 2014spa
dc.source.bibliographiccitationT. J. Freeborn, B. Maundy, and A. S. Elwakil, “Extracting the parameters of the double-dispersion cole bioimpedance model from magnitude response measurements,” Med. Biol. Eng. Comput., vol. 52, no. 9, pp. 749–758, Sep. 2014spa
dc.source.bibliographiccitationA. AboBakr, L. A. Said, A. H. Madian, A. S. Elwakil, and A. G. Radwan, “Experimental comparison of integer/fractional-order electrical models of plant,” AEU-Int. J. Electron. Commun., vol. 80, pp. 1–9, Jun. 2017spa
dc.source.bibliographiccitationM.-H. Jun et al., “Glucose-independent segmental phase angles from multi-frequency bioimpedance analysis to discriminate diabetes mellitus,” Sci. Rep., vol. 8, no. 1, Dec. 2018, Art. no. 648spa
dc.source.bibliographiccitationF. Clemente, P. Arpaia, and C. Manna, “Characterization of human skin impedance after electrical treatment for transdermal drug delivery,” Measurement, vol. 46, no. 9, pp. 3494–3501, Nov. 2013spa
dc.source.bibliographiccitationN. Li, H. Xu, W. Wang, Z. Zhou, G. Qiao, and D. D.-U. Li, “A highspeed bioelectrical impedance spectroscopy system based on the digital auto-balancing bridge method,” Meas. Sci. Technol., vol. 24, no. 6, May 2013, Art. no. 065701spa
dc.source.bibliographiccitationM. Min, T. Parve, A. Ronk, P. Annus, and T. Paavle, “Synchronous sampling and demodulation in an instrument for multifrequency bioimpedance measurement,” IEEE Trans. Instrum. Meas., vol. 56, no. 4, pp. 1365–1372, Aug. 2007spa
dc.source.bibliographiccitationS. Grassini, S. Corbellini, E. Angelini, F. Ferraris, and M. Parvis, “Lowcost impedance spectroscopy system based on a logarithmic amplifier,” IEEE Trans. Instrum. Meas., vol. 64, no. 5, pp. 1110–1117, May 2015spa
dc.source.bibliographiccitationS. Grassini, S. Corbellini, M. Parvis, E. Angelini, and F. Zucchi, “A simple Arduino-based EIS system for in situ corrosion monitoring of metallic works of art,” Measurement, vol. 114, pp. 508–514, Jan. 2018spa
dc.source.bibliographiccitationK. Chabowski, T. Piasecki, A. Dzierka, and K. Nitsch, “Simple wide frequency range impedance meter based on AD5933 integrated circuit,” Metrol. Meas. Syst., vol. 21, no. 1, pp. 13–24, Mar. 2015spa
dc.source.bibliographiccitationA. S. Paterno, R. A. Stiz, and P. Bertemes-Filho, “Phase/magnitude retrieval algorithms in electrical bioimpedance spectroscopy,” in Proc. IFMBE, Sep. 2009, pp. 5–8spa
dc.source.bibliographiccitationJ. J. Cabrera-López, J. Velasco-Medina, E. R. Denis, J. F. B. Caldero˝n, and O. J. G. Guevara, “Bioimpedance measurement using mixed-signal embedded system,” in Proc. IEEE 7th Latin Amer. Symp. Circuits Syst. (LASCAS), Mar. 2016, pp. 335–338spa
dc.source.bibliographiccitationP. Arpaia, U. Cesaro, and N. Moccaldi, “A bioimpedance meter to measure drug in transdermal delivery,” IEEE Trans. Instrum. Meas., vol. 67, no. 10, pp. 2324–2331, Oct. 2018spa
dc.source.bibliographiccitationA. Guha and A. Patra, “Online estimation of the electrochemical impedance spectrum and remaining useful life of lithium-ion batteries,” IEEE Trans. Instrum. Meas., vol. 67, no. 8, pp. 1836–1849, Aug. 2018spa
dc.source.bibliographiccitationR. Brajkoviˇc, T. Žagar, and D. Križaj, “Frequency synchronization analysis in digital lock-in methods for bio-impedance determination,” Meas. Sci. Rev., vol. 14, no. 6, pp. 343–349, Dec. 2014spa
dc.source.bibliographiccitationG. Lentka, “Using a particular sampling method for impedance measurement,” Metrol. Meas. Syst., vol. 21, no. 3, pp. 497–508, Aug. 2014spa
dc.source.bibliographiccitationP. J. Langlois, N. Neshatvar, and A. Demosthenous, “A sinusoidal current driver with an extended frequency range and multifrequency operation for bioimpedance applications,” IEEE Trans. Biomed. Circuits Syst., vol. 9, no. 3, pp. 401–411, Jun. 2014spa
dc.source.bibliographiccitationD. Bouchaala, O. Kanoun, and N. Derbel, “High accurate and wideband current excitation for bioimpedance health monitoring systems,” Measurement, vol. 79, pp. 339–348, Feb. 2016spa
dc.source.bibliographiccitationU. Birgersson, “Electrical impedance of human skin and tissue alterations: Mathematical modeling and measurements,” Ph.D. dissertation, Dept. Clin. Sci., Intervent. Technol., Karolinska Inst., Stockholm, Sweden, 2012spa
dc.source.bibliographiccitationG. Cerro, M. Ferdinandi, L. Ferrigno, M. Laracca, and M. Molinara, “Metrological characterization of a novel microsensor platform for activated carbon filters monitoring,” IEEE Trans. Instrum. Meas., vol. 67, no. 10, pp. 2504–2515, Oct. 2018spa
dc.source.bibliographiccitationY. Mohamadou, F. Momo, L. Theophile, C. N. K. Landry, T. Fabrice, and S. Emmanuel, “Accuracy enhancement in low frequency gain and phase detector (AD8302) based bioimpedance spectroscopy system,” Measurement, vol. 123, pp. 304–308, Jul. 2018spa
dc.source.bibliographiccitationJ. Maldonado et al., “Evaluation of electric impedance spectroscopy (EIS) to determine breast cancer type in voluntary patients,” in Proc. IFMBE, vol. 33, 2011, pp. 49–52spa
dc.source.bibliographiccitationG. Qiao, W. Wang, W. Duan, F. Zheng, A. J. Sinclair, and C. R. Chatwin, “Bioimpedance analysis for the characterization of breast cancer cells in suspension,” IEEE Trans. Biomed. Eng., vol. 59, no. 8, pp. 2321–2329, Aug. 2012spa
dc.source.bibliographiccitationV. Nerguizian, A. Alazzam, I. Stiharu, and M. Burnier, “Characterization of several cancer cell lines at microwave frequencies,” Measurement, vol. 109, pp. 354–358, Oct. 2017spa
dc.source.bibliographiccitationA. Atangana and A. Secer, “A note on fractional order derivatives and table of fractional derivatives of some special functions,” Abstr. Appl. Anal., vol. 2013, no. 1, Mar. 2013, Art. no. 279681spa
dc.source.bibliographiccitationI. Podlubny, Fractional Differential Equations. San Diego, CA, USA: Academic, 1999, pp. 1–366spa
dc.source.bibliographiccitationJ. R. González-Araiza, M. C. Ortiz-Sánchez, F. M. Vargas-Luna, and J. M. Cabrera-Sixto, “Application of electrical bio-impedance for the evaluation of strawberry ripeness,” Int. J. Food Properties, vol. 20, no. 5, pp. 1044–1050, 2017spa
dc.source.bibliographiccitationJ. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM J. Optim., vol. 9, no. 1, pp. 112–147, Jan. 1998spa

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Derechos Reservados - Universidad Autónoma de Occidente
Except where otherwise noted, this item's license is described as Derechos Reservados - Universidad Autónoma de Occidente