Show simple item record

dc.contributor.authorAparicio Rojas, Gladis Miriamspa
dc.contributor.authorDíaz Ortiz, Jolman Stivenspa
dc.contributor.authorJurado Meneses, Nori Magalispa
dc.contributor.authorDelgado Rosero, Miguel Ibanspa
dc.coverage.spatialUniversidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundíspa
dc.date.accessioned2019-11-07T23:48:15Zspa
dc.date.available2019-11-07T23:48:15Zspa
dc.date.issued2018spa
dc.identifier.citationDiaz-Ortiz, J. S., Delgado-Rosero, M. I., Jurado-Meneses, N. M., & Aparicio-Rojas, G. M. (2018). Análisis térmico y espectrometría de masas en conductores protónicos (PVDF/H 3 PO 2) para implementación en celdas de combustible. Dyna, 85(204), 143-149spa
dc.identifier.issn2346-2183 (en línea)spa
dc.identifier.issn0012-7353 (impresa)spa
dc.identifier.urihttp://hdl.handle.net/10614/11435spa
dc.identifier.urihttps://revistas.unal.edu.co/index.php/dyna/article/view/66968spa
dc.descriptionSe prepararon membranas de Polivinil Difluoruro y Acido Hipofosforoso (PVDF/H3PO2) con diferentes concentraciones de ácido. Los resultados de calorimetría diferencial de barrido (DSC), presentan un escalón característico de la transición vítrea alrededor de 250 K. También se observan dos anomalías endotérmicas: una cercana a 357 K debido a la evaporación de agua, y otra cerca a los 422 K atribuida a la fusión de la fase cristalina del PVDF. Los análisis de Espectrometría de masas (MS) acoplado con Termogravimetría (TGA), revelan la posible presencia de moléculas de (C2H2O) y ácido fluorhídrico (HF), esto plantea la posibilidad de que el H3PO2 perdió un átomo de hidrógeno y se enlazó a la cadena polimérica del PVDF desplazando un átomo de flúor. Se evidencia la presencia de moléculas de agua a diferentes temperaturas, que sugiere la formación de agua superficial, interna y estructural en el sistema polímero-acido. Esta característica, hace que el sistema PVDF/H3PO2 sea propuesto como electrolito solido en celdas de combustiblespa
dc.description.abstractPolyvinyl Difluoride and Hypophosphorous Acid (PVDF/H3PO2) membranes were prepared with different concentrations of acid. The differential scanning calorimetry (DSC) results showed a typical step of the glass transition around 250 K. Two endothermic anomalies were observed: one closed to 357.6 K due to the evaporation of water, and another closed to 422 K attributed to the melting of the crystalline phase of PVDF. The mass spectrometry (MS) coupled with thermogravimetry analysis (TGA) reveal the possible presence of (C2H2O) and hydrofluoric acid (HF) molecules, thereby raises the possibility that H3PO2 lost a hydrogen atom and bonded to the polymer chain of the PVDF by displacing an atom of fluorine. The presence of water molecules at different temperatures suggests the formation of superficial, internal and structural water in the polymer-acid system. This feature makes the PVDF/H3PO2 system to be proposed as solid electrolyte in fuel cellseng
dc.formatapplication/pdfspa
dc.format.extentpáginas 143-149spa
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombia (Sede Medellín). Facultad de Minasspa
dc.relationDYNA, volumen 85, número 204, páginas 143-149, 2018
dc.rightsDerechos Reservados - Universidad Autónoma de Occidentespa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.sourceinstname:Universidad Autónoma de Occidentespa
dc.sourcereponame:Repositorio Institucional UAOspa
dc.subjectTermogravimetríaeng
dc.subjectCelda de combustiblespa
dc.subjectElectrolito sólidospa
dc.subjectPolímerospa
dc.subjectCalorimetría DSCspa
dc.subjectEspectrometría MSspa
dc.titleAnálisis térmico y espectrometría de masas en conductores protónicos (PVDF/H3PO2) para implementación en celdas de combustiblespa
dc.title.alternativeThermal analysis and mass spectrometry in protonic conductors (PVDF/H3PO2) for implementation in fuel cellseng
dc.typeArtículo de revistaspa
dc.subject.lembMass spectrometryeng
dc.subject.lembEspectrometría de masasspa
dc.subject.armarcPolymer engineeringeng
dc.subject.armarcIngeniería de polímerosspa
dc.identifier.doihttps://doi.org/10.15446/dyna.v85n204.66968spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.source.bibliographiccitationMitha, B., Sridhar, S. and Khan, A.A., Solid polymer electrolyte membranes for fuel cell applications - A review, J. Memb. Sci. 259, pp. 10-26, 2005. DOI:10.1016/j.memsci.2005.01.035spa
dc.source.bibliographiccitationRenzi, M., Agostini, M., Navarra, M.A. and Nobili, F., An innovative membrane-electrode assembly for efficient and durable polymer electrolyte membrane fuel cell operations, Int. J. Hydrogen Energy, 42, pp. 16686-16694, 2017. DOI: 10.1016/j.ijhydene.2017.05.168spa
dc.source.bibliographiccitationKrishnan, N.N., Henkensmeier, D., Park, Y.H., Jang, J.H., Kwon, T., Koo, C.M., Kim, H.J., Han, J. and Nam, S.W., Blue membranes: Sulfonated copper(II) phthalocyanine tetrasulfonic acid based composite membranes for DMFC and low relative humidity PEMFC, J. Memb. Sci. 502, pp. 1-10, 2016. DOI:10.1016/j.memsci.2015.12.035spa
dc.source.bibliographiccitationNoponen, T. and Kohonen, A., An alternative concept for DMFC - Combined electrolyzer and H2 PEMFC, International Journal of Hydrogen Energy. 41, pp. 2154-2164, 2016. DOI: 10.1016/j.ijhydene.2015.12.007spa
dc.source.bibliographiccitationAlvarado-Flores, J., Estudio comparativo de las diferentes tecnologias de celdas de combustible, Bol. La Soc. Esp. Ceram. Y Vidr, 52, pp. 105-117, 2013. DOI: 10.3989/cyv.142013spa
dc.source.bibliographiccitationJeon, S.W., Cha, D., Kim, H.S. and Kim, Y., Analysis of the system efficiency of an intermediate temperature proton exchange membrane fuel cell at elevated temperature and relative humidity conditions, Appl. Energy, 166, pp. 165-173, 2016. DOI: 10.1016/j.apenergy.2015.12.123spa
dc.source.bibliographiccitationClochard, M.C., Berthelot, T., Baudin, C., Betz, N., Balanzat, E., Gébel, G. and Morin, A., Ion track grafting: A way of producing low-cost and highly proton conductive membranes for fuel cell applications, J. Power Sources, 195, pp. 223-231, 2010. DOI: 10.1016/j.jpowsour.2009.07.016spa
dc.source.bibliographiccitationZakil, F.A., Kamarudin, S.K. and Basri, S., Modified Nafion membranes for direct alcohol fuel cells: An overview, Renewable and Sustainable Energy Reviews, 65, pp. 841-852, 2016. DOI:10.1016/j.rser.2016.07.040spa
dc.source.bibliographiccitationVargas, M.A., Vargas, R.A. and Mellander, B., More studies on the PVAl+H3PO2+H2O proton conductor gels, Electrochimica, 45, pp. 1399-1403, 2000spa
dc.source.bibliographiccitationFernández, M.E., Murillo, G., Vargas, R.A., Peña Lara, D. and Diosa, J.E., Improvement of Proton-Exchange Membranes Based on (1−x)(H3PO2/PVA)-xTiO2, Ingeniería y Ciencia, 13, pp. 153-166, 2017. DOI: 10.17230/ingciencia.13.25.6spa
dc.source.bibliographiccitationByun, J., Sauk, J. and Kim, H., Preparation of PVdF/PSSA composite membranes using supercritical carbon dioxide for direct methanol fuel cells, Int. J. Hydrogen Energy, 34, pp. 6437-6442, 2009. DOI: 10.1016/j.ijhydene.2009.06.025spa
dc.source.bibliographiccitationVásquez-Bonilla, R.A., Síntesis y caracterización de conductores protónicos polifluoruro de vinilideno/ácido hipofosforoso (PVDF/H3PO2), Tesis (MSc. Ciencia-Física), Universidad del Tolima, Ibagué, Colombia, 2015, 46 P.spa
dc.source.bibliographiccitationVilčiauskas, L., De Araujo, C.C. and Kreuer, K.D., Proton conductivity and diffusion in molten phosphinic acid (H3PO2): The last member of the phosphorus oxoacid proton conductor family, Solid State Ionics, 212, pp. 6-9, 2012. DOI: 10.1016/j.ssi.2012.02.019spa
dc.source.bibliographiccitationMuniyandi, N., Kalaiselvi, N., Periyasamy, P., Thirunakaran, R., Ramesh, B., Gopukumar, S., Premkumar, T., Renganathan, N.G. and Raghavan, M., Optimisation of PVdF-based polymer electrolytes, J. Power Sources, 96, pp. 14-19, 2001spa
dc.source.bibliographiccitationShen, Y.J., Reddy, M.J., Chu, P.P. Porous PVDF with LiClO 4 complex as d solid T and d wet T polymer electrolyte, Solid State Ionics, 175, pp. 747-750, 2004. DOI: 10.1016/j.ssi.2003.10.020spa
dc.source.bibliographiccitationTornga, S.C., Yang, D., Orler, B. and Welch, C., Aging of poly (vinylidene fluoride) hollow fibers in light hydrocarbon environments environments, J. Memb. Sci., 409-410, pp. 302-317, 2012. DOI: 10.1016/j.memsci.2012.03.067spa
dc.source.bibliographiccitationJia, N., He, Q., Sun, J., Xia, G. and Song, R., Crystallization behavior and electroactive properties of PVDF, P(VDF-TrFE) and their blend fi lms, Polym. Test., 57, pp. 302-306, 2017. DOI:10.1016/j.polymertesting.2016.12.003spa
dc.source.bibliographiccitationBaskaran, R., Selvasekarapandian, S., Kuwata, N., Kawamura, J., Hattori, T., ac impedance, DSC and FT-IR investigations on (x) PVAc –( 1 − x ) PVdF blends with LiClO4, Mater. Chem. Phys., 98, pp. 55-61, 2006. DOI: 10.1016/j.matchemphys.2005.08.063spa
dc.source.bibliographiccitationPolu, A.R. and Rhee, H., Ionic liquid doped PEO-based solid polymer electrolytes for lithium-ion polymer batteries, Int. J. Hydrogen Energy, 42, pp. 7212-7219, 2017. DOI: 10.1016/j.ijhydene.2016.04.160spa
dc.source.bibliographiccitationSingha, S. and Jana, T., Effect of composition on the properties of PEM based on polybenzimidazole and poly (vinylidene fluoride) blends, Polymer (Guildf), 55, pp. 594-601, 2014. DOI:10.1016/j.polymer.2013.12.021spa
dc.source.bibliographiccitationGonzález-Trujillo, Y.F. y Vargas-Zapata, R.A., Estudio de las propiedades termodinámicas y eléctricas de materiales compuestos póliméricos basados en el poli(vinil alcohol) (PVA) + H3PO2 + TiO2, Rev. Iberoam. Polímeros, 12, pp. 64-75, 2011spa
dc.source.bibliographiccitationHezma, A.M., Elashmawi, I.S., Abdelrazek, E.M., Rajeh, A. and Kamal, M., Enhancement of the thermal and mechanical properties of polyurethane/polyvinyl chloride blend by loading single walled carbon nanotubes, Prog. Nat. Sci. Mater. Int., 27, pp. 338-343, 2017. DOI: 10.1016/j.pnsc.2017.06.001spa
dc.source.bibliographiccitationLin, Y., Jia, Y., Alva, G. and Fang, G., Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage, Renew. Sustain. Energy Rev., 10, pp. 1-13, 2017. DOI: 10.1016/j.rser.2017.10.002spa


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Derechos Reservados - Universidad Autónoma de Occidente
Except where otherwise noted, this item's license is described as Derechos Reservados - Universidad Autónoma de Occidente