Show simple item record

dc.contributor.authorLain Beatove, Santiagospa
dc.contributor.authorSommerfeld, Martínspa
dc.coverage.spatialUniversidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundíspa
dc.date.accessioned2019-11-01T20:57:55Zspa
dc.date.available2019-11-01T20:57:55Zspa
dc.date.issued2018-03-15spa
dc.identifier.citationSommerfeld, M., & Lain, S. (2018). Stochastic modelling for capturing the behaviour of irregular-shaped non-spherical particles in confined turbulent flows. Powder Technology, 332, 253-264spa
dc.identifier.issn0032-5910spa
dc.identifier.urihttp://hdl.handle.net/10614/11391spa
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0032591018302171spa
dc.description.abstractFor calculating dispersed particle-ladenflows in confined systems, the well-known Euler/Lagrange approach ismost suitable. Lagrangian tracking of non-spherical particles with certain shapes is mostly performed by addi-tionally solving for the orientation of particles in theflow and using resistance coefficients (i.e. drag, lift andtorque) which depend on this orientation. For that in many cases theoretical results for Stokesflow aroundsuch particles are used. In practical situations where very often irregular shaped non-spherical particles aretransported in aflow, such an approach cannot be adopted since the particles have mostly a statistical distribu-tion of shape and hence it is difficult to define a major and minor axis of the particles. The novel approach devel-oped here is based on a statistical treatment of thefluid forces and moments acting on irregular-shaped particlesas well as the wall collision process in order to mimic their stochastic behaviour. The required probability distri-bution functions (PDF's) for the resistance coefficients were derived by applying direct numerical simulations(DNS) based on the Lattice-Boltzmann method (LBM). The PDF's for the wall normal and parallel restitution ra-tios were developed based on an experimental analysis of the wall collision of irregular-shaped particles usingstereoscopic high-speed imaging. Preliminary Euler/Lagrange calculations applying these statistical modelswere conducted for a horizontal channelflow laden with irregular-shaped particles and compared to measure-ments. The results revealed that the calculation of the particle phase assuming the standard models for sphericalparticles yields completely wrong cross-stream profiles of particle massflux, an under-prediction of the stream-wise particle mean velocity and an over-prediction of the associatedfluctuating component. The stochasticmodels for theflow resistance coefficients and the wall collision process on the other hand provided much betteragreement with the measurementseng
dc.formatapplication/pdfspa
dc.format.extentpáginas 253-264spa
dc.language.isoengeng
dc.publisherElsevier
dc.relationPowder Technology, volumen 332, issue 1, páginas 253-264, (june 2018)
dc.rightsDerechos Reservados - Universidad Autónoma de Occidentespa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.sourceinstname:Universidad Autónoma de Occidentespa
dc.sourcereponame:Repositorio Institucional UAOspa
dc.subjectNon-spherical particleseng
dc.subjectIrregular shapeeng
dc.subjectStatistical treatmenteng
dc.subjectEuler/Lagrange approacheng
dc.subjectFluid forceseng
dc.subjectResistance coefficientseng
dc.subjectLattice-Boltzmann methodeng
dc.subjectWall collision processeng
dc.subjectVelocity ratioseng
dc.subjectExperimentseng
dc.titleStochastic modelling for capturing the behaviour of irregular-shaped non-spherical particles in confined turbulent flowseng
dc.typeArtículo de revistaspa
dc.subject.lembSpectrum analysiseng
dc.subject.lembAnálisis espectralspa
dc.subject.armarcParticle accelerationeng
dc.subject.armarcAceleración de partículasspa
dc.identifier.doihttps://doi.org/10.1016/j.powtec.2018.03.026spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.source.bibliographiccitationM. Sommerfeld, B. van Wachem, R. Oliemans Best Practice Guidelines for Computational Fluid Dynamics of Dispersed Multiphase Flows. ERCOFTAC (European Research Community on Flow, Turbulence and Combustion) (ISBN 978-91-633-3564-8) (2008)spa
dc.source.bibliographiccitationM. Sommerfeld Modelling and numerical calculation of turbulent gas-solid flows with the Euler/Lagrange approach (Powder and Particle), No. 16, KONA (1998), pp. 194-206spa
dc.source.bibliographiccitationM. Sommerfeld Analysis of collision effects for turbulent gas-particle flow in a horizontal channel: part I. Particle transport Int. J. Multiphase Flow, 29 (2003), pp. 675-699 ArticleDownload PDFspa
dc.source.bibliographiccitationC.T. Crowe, J.D. Schwarzkopf, M. Sommerfeld, Y. Tsuji Multiphase Flows with Droplets and Particles (2nd ed.), CRC Press, Boca Raton, U.S.A. (2012) (ISBN 978-1-4398-4050-4)spa
dc.source.bibliographiccitationM. Sommerfeld Particle motion in fluids VDI-Buch: VDI Heat Atlas, Springer Verlag Berlin, Heidelberg (2010), pp. 1181-1196 Part 11spa
dc.source.bibliographiccitationM. Sommerfeld Numerical methods for dispersed multiphase flows T. Bodnár, G.P. Galdi, Š. Necčasová (Eds.), Particles in Flows, Springer (2017)spa
dc.source.bibliographiccitationA. Haider, O. Levenspiel Drag coefficient and terminal velocity of spherical and nonspherical particles Powder Technol., 58 (1983), pp. 63-70spa
dc.source.bibliographiccitationB. van Wachem, M. Zastawny, F. Zhao, G. Mallouppas Modelling of gas-solid turbulent channel flow with non-spherical particles with large stokes numbers Int. J. Multiphase Flow, 68 (2015), pp. 80-92 ArticleDownload PDFspa
dc.source.bibliographiccitationA. Hölzer, M. Sommerfeld Lattice Boltzmann simulations to determine drag, lift and torque acting on non-spherical particles Comput. Fluids, 38 (2009), pp. 572-589 ArticleDownload PDFspa
dc.source.bibliographiccitationM. Zastawny, G. Mallouppas, F. Zhao, B. van Wachem Derivation of drag and lift force and torque coefficients for non-spherical particles in flows Int. J. Multiphase Flow, 39 (2012), pp. 227-239 ArticleDownload PDFspa
dc.source.bibliographiccitationR. Ouchene, M. Khalij, B. Acer, A. Taniere A new set of correlations of drag, lift and torque coefficients for non-spherical particles at large Reynolds numbers Powder Technol., 303 (2016), pp. 33-43 ArticleDownload PDFspa
dc.source.bibliographiccitationD.O. Njobuenwu, M. Fairweather Dynamics of single, non-spherical ellipsoidal particles in a turbulent channel flow Chem. Eng. Sci., 123 (2015), pp. 265-282 ArticleDownload PDFspa
dc.source.bibliographiccitationM. Sommerfeld Kinetic simulations for analysing the wall collision of non-spherical particles Joint US ASME/European Fluids Engineering Summer Conference, Montreal, Paper No. FEDSM 2002-31239 (2002)spa
dc.source.bibliographiccitationB. Quintero Arboleda, Z. Qadir, M. Sommerfeld, S. Lain Modelling the wall collision of regular non-spherical particles and experimental validation Proceedings of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting; FEDSM2014; August 3-7, 2014, Chicago, Illinois, USA (2014) (Paper No. FEDSM2014-21610)spa
dc.source.bibliographiccitationJ. Kussin Experimentelle Studien zur Partikelbewegung und Turbulenzmodifikation in einem horizontalen Kanal bei unterschiedlichen Wandrauhigkeiten PhD Thesis Zentrum für Ingenieurwissenschaften, Martin-Luther Universität Halle-Wittenberg (2003)spa
dc.source.bibliographiccitationM. Sommerfeld, S. Lain, Z. Qadir Strategy in modelling irregular shaped particle behavior in confined turbulent flows Proceedings of the COST Action FP1005 Final Conference and EUROMECH Colloquium 566 “Anisotropic Particle in Turbulence”, Trondheim Norway (2015), pp. 70-74 (June 9. – 12.)spa
dc.source.bibliographiccitationM. Dietzel, M. Sommerfeld Numerical calculation of flow resistance for agglomerates with different morphology by the Lattice-Boltzmann Method Powder Technol., 250 (2013), pp. 122-137 ArticleDownload PDFspa
dc.source.bibliographiccitationM. Sommerfeld, Z. Qadir Fluid Dynamic Forces Acting on Irregular Shaped Particles: Simulations by the Lattice-Boltzmann Method Int. J. Multiphase Flow, 101 (2018), pp. 212-222 ArticleDownload PDFspa
dc.source.bibliographiccitationP.L. Bhatnagar, E.P. Gross, M. Krook A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems Phys. Rev., 94 (1954), pp. 511-525spa
dc.source.bibliographiccitationS. Laín, M. Sommerfeld, B. Quintero, Z. Qadir Modelling and computation of irregular non-spherical particles transport in confined turbulent flow 13th International Conference on Multiphase Flow in Industrial Plants, Sestri Levante (Genova), Italy, September 17–19 (2014)spa
dc.source.bibliographiccitationL. Schiller, A. Naumann Über die grundlegende Berechnung bei der Schwerkraftaufbereitung 44, Verein Deutscher Ingenieure (1933), pp. 318-320spa
dc.source.bibliographiccitationM. Sommerfeld, N. Huber Experimental analysis and modelling of particle-wall collisions Int. J. Multiphase Flow, 25 (1999), pp. 1457-1489 ArticleDownload PDFspa
dc.source.bibliographiccitationM. Sommerfeld, S. Lain From elementary processes to the numerical prediction of industrial particle-laden flows Multiph. Sci. Technol., 21 (2009), pp. 123-140spa
dc.source.bibliographiccitationM. Sommerfeld, C. Tropea S.L. Soo (Ed.), Single-Point Laser Measurement. Chapter 7 in Instrumentation for Fluid-Particle Flow, Noyes Publications (1999), pp. 252-317 ArticleDownload PDFspa
dc.source.bibliographiccitationS. Lain, M. Sommerfeld Euler/Lagrange computations of pneumatic conveying in a horizontal channel with different wall roughness Powder Technol., 184 (2008), pp. 76-88 ArticleDownload PDFspa
dc.source.bibliographiccitationS. Lain, M. Sommerfeld Numerical calculation of pneumatic conveying in horizontal channels and pipes: detailed analysis of conveying behaviour Int. J. Multiphase Flow, 39 (2012), pp. 105-120 ArticleDownload PDFspa
dc.source.bibliographiccitationW.P. Jones, P. Musonge Closure of the Reynolds stress and scalar flux equations Phys. Fluids, 31 (1988), pp. 3589-3604spa
dc.source.bibliographiccitationS. Laín, M. Sommerfeld Characterisation of pneumatic conveying systems using the Euler/Lagrange approach Powder Technol., 235 (2013), pp. 764-782 ArticleDownload PDFspa
dc.source.bibliographiccitationM.F. Göz, S. Laín, M. Sommerfeld Study of the numerical instabilities in Lagrangian tracking of bubbles and particles in two-phase flow Comput. Chem. Eng., 28 (2004), pp. 2727-2733spa


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Derechos Reservados - Universidad Autónoma de Occidente
Except where otherwise noted, this item's license is described as Derechos Reservados - Universidad Autónoma de Occidente