dc.contributor.author | Lain Beatove, Santiago | spa |
dc.contributor.author | Sommerfeld, Martín | spa |
dc.coverage.spatial | Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí | spa |
dc.date.accessioned | 2019-11-01T20:57:55Z | spa |
dc.date.available | 2019-11-01T20:57:55Z | spa |
dc.date.issued | 2018-03-15 | spa |
dc.identifier.citation | Sommerfeld, M., & Lain, S. (2018). Stochastic modelling for capturing the behaviour of irregular-shaped non-spherical particles in confined turbulent flows. Powder Technology, 332, 253-264 | spa |
dc.identifier.issn | 0032-5910 | spa |
dc.identifier.uri | http://hdl.handle.net/10614/11391 | spa |
dc.identifier.uri | https://www.sciencedirect.com/science/article/pii/S0032591018302171 | spa |
dc.description.abstract | For calculating dispersed particle-ladenflows in confined systems, the well-known Euler/Lagrange approach ismost suitable. Lagrangian tracking of non-spherical particles with certain shapes is mostly performed by addi-tionally solving for the orientation of particles in theflow and using resistance coefficients (i.e. drag, lift andtorque) which depend on this orientation. For that in many cases theoretical results for Stokesflow aroundsuch particles are used. In practical situations where very often irregular shaped non-spherical particles aretransported in aflow, such an approach cannot be adopted since the particles have mostly a statistical distribu-tion of shape and hence it is difficult to define a major and minor axis of the particles. The novel approach devel-oped here is based on a statistical treatment of thefluid forces and moments acting on irregular-shaped particlesas well as the wall collision process in order to mimic their stochastic behaviour. The required probability distri-bution functions (PDF's) for the resistance coefficients were derived by applying direct numerical simulations(DNS) based on the Lattice-Boltzmann method (LBM). The PDF's for the wall normal and parallel restitution ra-tios were developed based on an experimental analysis of the wall collision of irregular-shaped particles usingstereoscopic high-speed imaging. Preliminary Euler/Lagrange calculations applying these statistical modelswere conducted for a horizontal channelflow laden with irregular-shaped particles and compared to measure-ments. The results revealed that the calculation of the particle phase assuming the standard models for sphericalparticles yields completely wrong cross-stream profiles of particle massflux, an under-prediction of the stream-wise particle mean velocity and an over-prediction of the associatedfluctuating component. The stochasticmodels for theflow resistance coefficients and the wall collision process on the other hand provided much betteragreement with the measurements | eng |
dc.format | application/pdf | spa |
dc.format.extent | páginas 253-264 | spa |
dc.language.iso | eng | eng |
dc.publisher | Elsevier | |
dc.relation | Powder Technology, volumen 332, issue 1, páginas 253-264, (june 2018) | |
dc.rights | Derechos Reservados - Universidad Autónoma de Occidente | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.source | instname:Universidad Autónoma de Occidente | spa |
dc.source | reponame:Repositorio Institucional UAO | spa |
dc.subject | Non-spherical particles | eng |
dc.subject | Irregular shape | eng |
dc.subject | Statistical treatment | eng |
dc.subject | Euler/Lagrange approach | eng |
dc.subject | Fluid forces | eng |
dc.subject | Resistance coefficients | eng |
dc.subject | Lattice-Boltzmann method | eng |
dc.subject | Wall collision process | eng |
dc.subject | Velocity ratios | eng |
dc.subject | Experiments | eng |
dc.title | Stochastic modelling for capturing the behaviour of irregular-shaped non-spherical particles in confined turbulent flows | eng |
dc.type | Artículo de revista | spa |
dc.subject.lemb | Spectrum analysis | eng |
dc.subject.lemb | Análisis espectral | spa |
dc.subject.armarc | Particle acceleration | eng |
dc.subject.armarc | Aceleración de partículas | spa |
dc.identifier.doi | https://doi.org/10.1016/j.powtec.2018.03.026 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ARTREF | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dc.source.bibliographiccitation | M. Sommerfeld, B. van Wachem, R. Oliemans Best Practice Guidelines for Computational Fluid Dynamics of Dispersed Multiphase Flows. ERCOFTAC (European Research Community on Flow, Turbulence and Combustion) (ISBN 978-91-633-3564-8) (2008) | spa |
dc.source.bibliographiccitation | M. Sommerfeld Modelling and numerical calculation of turbulent gas-solid flows with the Euler/Lagrange approach (Powder and Particle), No. 16, KONA (1998), pp. 194-206 | spa |
dc.source.bibliographiccitation | M. Sommerfeld Analysis of collision effects for turbulent gas-particle flow in a horizontal channel: part I. Particle transport Int. J. Multiphase Flow, 29 (2003), pp. 675-699 ArticleDownload PDF | spa |
dc.source.bibliographiccitation | C.T. Crowe, J.D. Schwarzkopf, M. Sommerfeld, Y. Tsuji Multiphase Flows with Droplets and Particles (2nd ed.), CRC Press, Boca Raton, U.S.A. (2012) (ISBN 978-1-4398-4050-4) | spa |
dc.source.bibliographiccitation | M. Sommerfeld Particle motion in fluids VDI-Buch: VDI Heat Atlas, Springer Verlag Berlin, Heidelberg (2010), pp. 1181-1196 Part 11 | spa |
dc.source.bibliographiccitation | M. Sommerfeld Numerical methods for dispersed multiphase flows T. Bodnár, G.P. Galdi, Š. Necčasová (Eds.), Particles in Flows, Springer (2017) | spa |
dc.source.bibliographiccitation | A. Haider, O. Levenspiel Drag coefficient and terminal velocity of spherical and nonspherical particles Powder Technol., 58 (1983), pp. 63-70 | spa |
dc.source.bibliographiccitation | B. van Wachem, M. Zastawny, F. Zhao, G. Mallouppas Modelling of gas-solid turbulent channel flow with non-spherical particles with large stokes numbers Int. J. Multiphase Flow, 68 (2015), pp. 80-92 ArticleDownload PDF | spa |
dc.source.bibliographiccitation | A. Hölzer, M. Sommerfeld Lattice Boltzmann simulations to determine drag, lift and torque acting on non-spherical particles Comput. Fluids, 38 (2009), pp. 572-589 ArticleDownload PDF | spa |
dc.source.bibliographiccitation | M. Zastawny, G. Mallouppas, F. Zhao, B. van Wachem Derivation of drag and lift force and torque coefficients for non-spherical particles in flows Int. J. Multiphase Flow, 39 (2012), pp. 227-239 ArticleDownload PDF | spa |
dc.source.bibliographiccitation | R. Ouchene, M. Khalij, B. Acer, A. Taniere A new set of correlations of drag, lift and torque coefficients for non-spherical particles at large Reynolds numbers Powder Technol., 303 (2016), pp. 33-43 ArticleDownload PDF | spa |
dc.source.bibliographiccitation | D.O. Njobuenwu, M. Fairweather Dynamics of single, non-spherical ellipsoidal particles in a turbulent channel flow Chem. Eng. Sci., 123 (2015), pp. 265-282 ArticleDownload PDF | spa |
dc.source.bibliographiccitation | M. Sommerfeld Kinetic simulations for analysing the wall collision of non-spherical particles Joint US ASME/European Fluids Engineering Summer Conference, Montreal, Paper No. FEDSM 2002-31239 (2002) | spa |
dc.source.bibliographiccitation | B. Quintero Arboleda, Z. Qadir, M. Sommerfeld, S. Lain Modelling the wall collision of regular non-spherical particles and experimental validation Proceedings of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting; FEDSM2014; August 3-7, 2014, Chicago, Illinois, USA (2014) (Paper No. FEDSM2014-21610) | spa |
dc.source.bibliographiccitation | J. Kussin Experimentelle Studien zur Partikelbewegung und Turbulenzmodifikation in einem horizontalen Kanal bei unterschiedlichen Wandrauhigkeiten PhD Thesis Zentrum für Ingenieurwissenschaften, Martin-Luther Universität Halle-Wittenberg (2003) | spa |
dc.source.bibliographiccitation | M. Sommerfeld, S. Lain, Z. Qadir Strategy in modelling irregular shaped particle behavior in confined turbulent flows Proceedings of the COST Action FP1005 Final Conference and EUROMECH Colloquium 566 “Anisotropic Particle in Turbulence”, Trondheim Norway (2015), pp. 70-74 (June 9. – 12.) | spa |
dc.source.bibliographiccitation | M. Dietzel, M. Sommerfeld Numerical calculation of flow resistance for agglomerates with different morphology by the Lattice-Boltzmann Method Powder Technol., 250 (2013), pp. 122-137 ArticleDownload PDF | spa |
dc.source.bibliographiccitation | M. Sommerfeld, Z. Qadir Fluid Dynamic Forces Acting on Irregular Shaped Particles: Simulations by the Lattice-Boltzmann Method Int. J. Multiphase Flow, 101 (2018), pp. 212-222 ArticleDownload PDF | spa |
dc.source.bibliographiccitation | P.L. Bhatnagar, E.P. Gross, M. Krook A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems Phys. Rev., 94 (1954), pp. 511-525 | spa |
dc.source.bibliographiccitation | S. Laín, M. Sommerfeld, B. Quintero, Z. Qadir Modelling and computation of irregular non-spherical particles transport in confined turbulent flow 13th International Conference on Multiphase Flow in Industrial Plants, Sestri Levante (Genova), Italy, September 17–19 (2014) | spa |
dc.source.bibliographiccitation | L. Schiller, A. Naumann Über die grundlegende Berechnung bei der Schwerkraftaufbereitung 44, Verein Deutscher Ingenieure (1933), pp. 318-320 | spa |
dc.source.bibliographiccitation | M. Sommerfeld, N. Huber Experimental analysis and modelling of particle-wall collisions Int. J. Multiphase Flow, 25 (1999), pp. 1457-1489 ArticleDownload PDF | spa |
dc.source.bibliographiccitation | M. Sommerfeld, S. Lain From elementary processes to the numerical prediction of industrial particle-laden flows Multiph. Sci. Technol., 21 (2009), pp. 123-140 | spa |
dc.source.bibliographiccitation | M. Sommerfeld, C. Tropea S.L. Soo (Ed.), Single-Point Laser Measurement. Chapter 7 in Instrumentation for Fluid-Particle Flow, Noyes Publications (1999), pp. 252-317 ArticleDownload PDF | spa |
dc.source.bibliographiccitation | S. Lain, M. Sommerfeld Euler/Lagrange computations of pneumatic conveying in a horizontal channel with different wall roughness Powder Technol., 184 (2008), pp. 76-88 ArticleDownload PDF | spa |
dc.source.bibliographiccitation | S. Lain, M. Sommerfeld Numerical calculation of pneumatic conveying in horizontal channels and pipes: detailed analysis of conveying behaviour Int. J. Multiphase Flow, 39 (2012), pp. 105-120 ArticleDownload PDF | spa |
dc.source.bibliographiccitation | W.P. Jones, P. Musonge Closure of the Reynolds stress and scalar flux equations Phys. Fluids, 31 (1988), pp. 3589-3604 | spa |
dc.source.bibliographiccitation | S. Laín, M. Sommerfeld Characterisation of pneumatic conveying systems using the Euler/Lagrange approach Powder Technol., 235 (2013), pp. 764-782 ArticleDownload PDF | spa |
dc.source.bibliographiccitation | M.F. Göz, S. Laín, M. Sommerfeld Study of the numerical instabilities in Lagrangian tracking of bubbles and particles in two-phase flow Comput. Chem. Eng., 28 (2004), pp. 2727-2733 | spa |