Show simple item record

dc.contributor.authorLain Beatove, Santiago
dc.contributor.authorLópez Mejía, Omar Darío
dc.contributor.authorVelasco, D.
dc.coverage.spatialUniversidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundíspa
dc.date.accessioned2019-10-08T16:51:30Z
dc.date.available2019-10-08T16:51:30Z
dc.date.issued2017-12
dc.identifier.citationVelasco, D., López Mejia, O., & Laín, S. (2017). Numerical simulations of active flow control with synthetic jets in a Darrieus turbine. Renewable Energy, 113, 129–140spa
dc.identifier.issn0960-1481spa
dc.identifier.urihttp://hdl.handle.net/10614/11176spa
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0960148117304688
dc.identifier.urihttps://reader.elsevier.com/reader/sd/pii/S0960148117304688?token=C9EB08DD218973265A8CBCCF77CD7AA90780576169B3FABCF2B9432CA9345E100B99C9F2982F0E40D70163FE2B45B2FB
dc.description.abstractThis study presents two-dimensional numerical simulations of the flow around a cross-flow vertical-axis water turbine (straight-bladed Darrieus type) using active flow control by means of synthetic jets. The performance of the turbine is quantitatively analyzed from the hydrodynamic coefficients (torque coefficient, power coefficient, tangential force coefficient, normal force coefficient, lift coefficient and drag coefficient) and qualitatively by the flow behavior (vorticity field). Numerical simulations of the turbine were carried out using a time-accurate Reynolds-averaged Navier-Stokes (RANS) in ANSYS FLUENT with the shear stress transport turbulence model. A transient rotor-stator model with a sliding mesh technique was used to capture the changes in the flow field at each time step. Numerical results show that the use of synthetic jets over the extrados and intrados of the airfoil increases the net torque and power output of the turbine. Besides, this increment in the net power generated by the turbine is higher than the power consumed by the synthetic jets. Therefore, it is demonstrated that the global efficiency of the turbine increases by means of this active flow control technique. Several flow phenomena such as vortex shedding and their interference with the blades were also studied and analyzedeng
dc.formatapplication/pdfeng
dc.format.extentpáginas 129-140spa
dc.language.isoengeng
dc.publisherElsevier
dc.relationRenewable Energy, volumen 113, páginas 129-140, (december, 2017)eng
dc.rightsDerechos Reservados - Universidad Autónoma de Occidentespa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/eng
dc.sourceinstname:Universidad Autónoma de Occidentespa
dc.sourcereponame:Repositorio Institucional UAOspa
dc.subjectComputational fluid dynamicseng
dc.subjectVertical-axis water turbineeng
dc.subjectDarrieus turbineeng
dc.subjectActive flow controleng
dc.subjectSynthetic jetseng
dc.subjectDynamic stall delayeng
dc.titleNumerical simulations of active flow control with synthetic jets in a Darrieus turbineeng
dc.typeArtículo de revistaspa
dc.subject.lembFluid dynamicseng
dc.subject.lembJets - fluid dynamicseng
dc.subject.lembDinámica de fluidosspa
dc.subject.lembChorros-dinámica de fluidosspa
dc.subject.armarcAerodynamicseng
dc.subject.armarcWind powereng
dc.subject.armarcAerodinámicaspa
dc.subject.armarcEnergía eólicaspa
dc.identifier.doihttps://doi.org/10.1016/j.renene.2017.05.075spa
dc.relation.referencesR. Fouquet, J. PearsonPast and prospective energy transitions: insights from history Energy Policy, 50 (2011), pp. 1-7spa
dc.relation.referencesS. Laín, O. López, B. Quintero, D. MenesesDesign optimization of a vertical Axis water turbine with CFD Alternative Energies - Advanced Structured Material, Springer, Berlin Heidelberg (2013), pp. 113-139spa
dc.relation.referencesD. CasteleinDynamic Stall on Vertical Axis Wind Turbines (Master of Science Thesis) TU Delft (2015)spa
dc.relation.referencesJ. Yen, N.A. AhmedEnhancing vertical axis wind turbine by dinamic stall control using synthetic jets J. Wind Eng. Industrial Aerodynamics, 114 (2013), pp. 12-17spa
dc.relation.referencesK. Almohammadi, D. Ingham, L. Ma, M. PourkashanianModeling dynamic stall of a straight blade vertical axis wind turbine J. Fluids Struct., 57 (2015), pp. 144-158spa
dc.relation.referencesB. Whitby, C. Ugalde-LooPerformance of pitch and stall regulated tidal stream turbines IEEE Trans. Sustain. Energy, 5 (1) (2014), pp. 64-72spa
dc.relation.referencesN. Fujisawa, S. ShibuyaObservations of dynamic stall on turbine blades J. Wind Eng. Industrial Aerodynamics, 89 (2001), pp. 201-214spa
dc.relation.referencesC. Ferreira, G. Van Kuik, G. Van Bussel, F. ScaranoVisualization by PIV of dynamic stall on a vertical axis wind turbine Exp. Fluids, 46 (2009), pp. 97-108spa
dc.relation.referencesO. Lopez, R. MoserComputational Study of a NACA4415 Airfoil Using Synthetic Jet Control The University of Texas at Austin (2009)spa
dc.relation.referencesK. Mohseni, R. MittalSynthetic Jets: Fundamentals and Applications CRC Press (2014)spa
dc.relation.referencesD. You, P. MoinStudy of Flow Separation over an Airfoil with Synthetic Jet Control Using Large-eddy Simulation Center for Turbulence Research-Annual Research Briefs (2007), pp. 311-321spa
dc.relation.referencesZ. Guoqing, Z. QijunParametric analyses for synthetic jet control on separation and stall over rotor airfoil Chin. J. Aeronautics, CSAA (2014), pp. 1051-1061spa
dc.relation.referencesF. Müller-Vahl, C. Nayeri, C. Paschereit, D. GreenblattDynamic stall control via adaptive blowing Renew. Energy, 97 (2016), pp. 47-64spa
dc.relation.referencesA. Menon, O. Sahni, F. Gandhi, M. Amitay Numerical Investigation of Synthetic Jet Based Flow Control for Vertical axis Wind Turbines Master of Science Rensselaer Polytechnic Institute, Troy, New York (2014)spa
dc.relation.referencesH. Tsai, T. ColoniusCoriolis effect on dynamic stall in a vertical Axis wind turbine at moderate Reynolds number 32nd AIAA Applied Aerodynamics Conference - AIAA AVIATION Forum (2014)spa
dc.relation.referencesD. Greenblatt, M. Schulman, A. Ben-HaravVertical axis wind turbine performance enhancement using plasma actuators Renew. Energy, 37 (2012), pp. 345-354spa
dc.relation.referencesT. Maitre, E. Amet, C. PelloneModeling of the flow in a Darrieus water turbine: wall grid refinement analysis and comparison with experiments Renew. Energy, 51 (2013), pp. 497-512spa
dc.relation.referencesB. Meneses, O. López, B. Quintero, S. LainComputational study of transient flow around Darrieus type cross flow water turbines J. Renew. Sustain. Energy, 8 (014501) (2016)spa
dc.relation.referencesS. Lain, C. OsorioSimulation and evaluation of a straight-bladed Darrieus-type cross flow marine turbine J. Sci. Industrial Res., 69 (2010), pp. 906-912spa
dc.relation.referencesY. Dai, W. LamNumerical study of straight-bladed Darrieus-Type tidal turbine Energy, 162 (2009), pp. 67-76spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501eng
dc.type.contentTexteng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFeng
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2eng
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85eng
dc.type.versioninfo:eu-repo/semantics/publishedVersioneng


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Derechos Reservados - Universidad Autónoma de Occidente
Except where otherwise noted, this item's license is described as Derechos Reservados - Universidad Autónoma de Occidente