Show simple item record

dc.contributor.authorLain, Santiago
dc.contributor.authorQuintero Arboleda, Brian
dc.contributor.authorLópez Mejía, Omar Darío
dc.contributor.authorMeneses, Diana
dc.coverage.spatialUniversidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundíspa
dc.date.accessioned2019-09-06T22:21:23Z
dc.date.available2019-09-06T22:21:23Z
dc.date.issued2016-01-13
dc.identifier.citationLópez, O., Meneses, D., Quintero, B., & Laín, S. (2016). Computational study of transient flow around Darrieus type cross flow water turbines. Journal of Renewable and Sustainable Energy, 8(1), 014501eng
dc.identifier.issn1941-7012 (en línea)spa
dc.identifier.urihttp://hdl.handle.net/10614/11062
dc.identifier.urihttps://aip.scitation.org/doi/abs/10.1063/1.4940023
dc.description.abstractThis study presents full transient numerical simulations of a cross-flow vertical-axis marine current turbine (straight-bladed Darrieus type) with particular emphasis on the analysis of hydrodynamic characteristics. Turbine design and performance are studied using a time-accurate Reynolds-averaged Navier–Stokes commercial solver. A physical transient rotor-stator model with a sliding mesh technique is used to capture changes in flow field at a particular time step. A shear stress transport k-ω turbulence model was initially employed to model turbulent features of the flow. Two dimensional simulations are used to parametrically study the influence of selected geometrical parameters of the airfoil (camber, thickness, and symmetry-asymmetry) on the performance prediction (torque and force coefficients) of the turbine. As a result, torque increases with blade thickness-to-chord ratio up to 15% and camber reduces the average load in the turbine shaft. Additionally, the influence of blockage ratio, profile trailing edge geometry, and selected turbulence models on the turbine performance prediction is investigatedeng
dc.formatapplication/pdfeng
dc.format.extent27 páginasspa
dc.language.isoengeng
dc.publisherAmerican Institute of Physics Inc.eng
dc.rightsDerechos Reservados - Universidad Autónoma de Occidentespa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/eng
dc.sourceinstname:Universidad Autónoma de Occidentespa
dc.sourcereponame:Repositorio Institucional UAOspa
dc.subjectDinámica de fluidos computacionalspa
dc.subjectAerodinámicaspa
dc.subjectHidroturbinasspa
dc.subjectTurbinas de vientospa
dc.subjectSimulaciones de turbulenciaspa
dc.titleComputational study of transient flow around Darrieus type cross flow water turbineseng
dc.typeArtículo de revistaspa
dc.subject.lembDinámica de fluidosspa
dc.subject.lembEcuaciones de Navier-stokesspa
dc.subject.lembArrastre (Aerodinámica)spa
dc.subject.lembFluid dynamicseng
dc.subject.lembNavier-stokes equationseng
dc.subject.lembDrag (aerodynamics)eng
dc.subject.armarcTurbinas hidráulicasspa
dc.subject.armarcNúmeros de Reynoldsspa
dc.subject.armarcHydraulic turbineseng
dc.subject.armarcReynolds numbereng
dc.identifier.doihttps://doi.org/10.1063/1.4940023spa
dc.relation.citationeditionVolumen 8, número 1 (enero, 2016)spa
dc.relation.citationissuenúmero 1spa
dc.relation.citationvolumeVolumen 8spa
dc.relation.ispartofjournalJournal of renewable and sustainable energyeng
dc.relation.referencesBlack and Veatch Consulting Ltd., UK, Europe and Global Tidal Stream Energy Resource Assessment ( Carbon Trust, London, 2004spa
dc.relation.referencesD. Kerr, Mar. Energy Philos. Trans. R. Soc. A 365, 971–992 (2007). https://doi.org/10.1098/rsta.2006.1959spa
dc.relation.referencesIRENA, See http://www.irena.org/DocumentDownloads/Publications/Tidal_Energy_V4_WEB.pdf for Tidal Energy, Technology Brief, 2014spa
dc.relation.referencesJ. Dabiri, “ Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays,” J. Renewable Sustainable Energy 3, 043104 (2011). https://doi.org/10.1063/1.3608170spa
dc.relation.referencesK. Duraisamy and V. Lakshminarayan, “ Flow physics and performance of vertical axis wind turbine arrays,” AIAA Paper No. 2014-3139spa
dc.relation.referencesD. P. Coiro, A. De Marco, F. Nicolosi, S. Melone, and F. Montella, “ Dynamic behaviour of the patented kobold tidal current turbine: Numerical and experimental aspects,” Acta Polytech. 45, 77–84 (2005spa
dc.relation.referencesS. Laín, M. García, B. Quintero, and S. Orrego, “ CFD numerical simulation of Francis turbines,” Rev. Fac. Ing. Univ. Antioquia 51, 21–33 (2010)spa
dc.relation.referencesS. Laín and R. Aliod, “ Study of the Eulerian dispersed phase equations in non-uniform turbulent two-phase flows: Discussion and comparison with experiments,” Int. J. Heat Fluid Flow 21, 374–380 (2000). https://doi.org/10.1016/S0142-727X(00)00023-0spa
dc.relation.referencesM. F. Göz, S. Laín, and M. Sommerfeld, “ Study of the numerical instabilities in Lagrangian tracking of bubbles and particles in two-phase flow,” Comput. Chem. Eng. 28, 2727–2733 (2004). https://doi.org/10.1016/j.compchemeng.2004.07.035spa
dc.relation.referencesC. J. S. Ferreira, “ The near wake of the VAWT. 2D and 3D views of the VAWT aerodynamics,” Ph.D. thesis ( Delft University of Technology, 2009)spa
dc.relation.referencesT. Maître, J. L. Achard, L. Guitet, and C. Ploesteanu, “ Marine turbine development: Numerical and experimental investigations,” Sci. Bull. 50, 59–66 (2005)spa
dc.relation.referencesA. Laneville and P. Vittecoq, “ Dynamic stall: The case of the vertical axis wind turbine,” J. Sol. Energy Eng. 108, 140–145 (1986). https://doi.org/10.1115/1.3268081spa
dc.relation.referencesR. Howell, N. Qin, J. Edwards, and N. Durrani, “ Wind tunnel and numerical study of a small vertical axis wind turbine,” Renewable Energy 35, 412–422 (2010). https://doi.org/10.1016/j.renene.2009.07.025spa
dc.relation.referencesY. Nabavi, “ Numerical study of the duct shape effect on the performance of a ducted vertical axis tidal turbine,” M.Sc. thesis ( British Columbia University, 2008)spa
dc.relation.referencesY. M. Dai and W. Lam, “ Numerical study of straight-bladed Darrieus-type tidal turbine,” ICE-Energy 162, 67–76 (2009). https://doi.org/10.1680/ener.2009.162.2.67spa
dc.relation.referencesE. Amet, T. Maître, C. Pellone, and J. L. Achard, “ 2D numerical simulations of blade-vortex interaction in a Darrieus turbine,” J. Fluids Eng. 131, 111103 (2009). https://doi.org/10.1115/1.4000258spa
dc.relation.referencesP. Fraunie, C. Beguier, I. Paraschivoiu, and G. Brochier, , “ Water channel experiments of dynamic stall on Darrieus wind turbine blades,” J. Propul. Power 2(5), 445–449 (1986). https://doi.org/10.2514/3.22927spa
dc.relation.referencesN. Fujisawa and S. Shibuya, “ Observations of dynamic stall on Darrieus wind turbine blades,” J. Wind Eng. Ind. Aerodyn. 89, 201–214 (2001). https://doi.org/10.1016/S0167-6105(00)00062-3spa
dc.relation.referencesY. Li and S. M. Calisal, “ Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine,” Renewable Energy 35, 2325–2334 (2010). https://doi.org/10.1016/j.renene.2010.03.002spa
dc.relation.referencesD. P. Coiro, F. Nicolosi, A. De Marco, S. Melone, and F. Montella, “ Dynamic behavior of novel vertical axis tidal current turbine: Numerical and experimental investigations,” in Proceedings of the International Offshore and Polar Engineering Conference (2005), pp. 469–476spa
dc.relation.referencesT. Maître, E. Amet, and C. Pellone, “ Modeling of the flow in a Darrieus water turbine: Wall grid refinement analysis and comparison with experiments,” Renewable Energy 51, 497–512 (2013). https://doi.org/10.1016/j.renene.2012.09.030spa
dc.relation.referencesE. Amet, “ Simulation Numérique d'une Hydrolienne à Axe Vertical de Type Darrieus,” Ph.D. thesis ( Institut Polytechnique de Grenoble, 2009)spa
dc.relation.referencesX. Jin, G. Zhao, K. Gao, and W. Ju, “ Darrieus vertical axis wind turbine: Basic research methods,” Renewable Sustainable Energy Rev. 42, 212–225 (2015). https://doi.org/10.1016/j.rser.2014.10.021spa
dc.relation.referencesC. Song, Y. Zheng, Z. Zhao, Y. Zhang, C. Li, and H. Jiang, “ Investigation of meshing strategies and turbulence models of computational fluid dynamics simulations of vertical axis wind turbines,” J. Renewable Sustainable Energy 7, 033111 (2015). https://doi.org/10.1063/1.4921578spa
dc.relation.referencesR. Lanzafame, S. Mauro, and M. Messina, “ 2D CFD modeling of H-Darrieus wind turbines using a transition turbulence model,” Energy Procedia 45, 131–140 (2014)spa
dc.relation.referencesY. Chen and Y. Lian, “ Numerical investigation of vortex dynamics in an H-rotor vertical axis wind turbine,” Eng. Appl. Comput. Fluid Mech. 9, 21–32 (2015). https://doi.org/10.1080/19942060.2015.1004790spa
dc.relation.referencesF. Trivellato and M. Raciti Castelli, “ On the courant-Friedrichs-Lewy criterion of rotating grids in 2D vertical-axis wind turbine analysis,” Renewable Energy 62, 53–62 (2014). https://doi.org/10.1016/j.renene.2013.06.022spa
dc.relation.referencesB. Paillard, J. Astolfi, and F. Hauville, “ URANSE simulation of an active variable-pitch cross-flow Darrieus tidal turbine: Sinusoidal pitch function investigation,” Int. J. Mar. Energy 11, 9–26 (2015). https://doi.org/10.1016/j.ijome.2015.03.001spa
dc.relation.referencesJ. Larsen, S. Nielsen, and S. Krenk, “ Dynamic stall model for wind turbine airfoils,” J. Fluids Struct. 23, 959–982 (2007). https://doi.org/10.1016/j.jfluidstructs.2007.02.005spa
dc.relation.referencesR. Nobile, M. Vahdati, J. Barlow, and A. Mewburn-Crook, “ Dynamic stall for a vertical axis wind turbine in a two-dimensional study,” in World Renewable Energy Congress 2011, Lindköping, Sweden, 8–13 May (2011), pp. 4225–4232spa
dc.relation.referencesF. R. Menter, “ Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA J. 32, 1598–1605 (1994). https://doi.org/10.2514/3.12149spa
dc.relation.referencesP. J. Roache, Verification and Validation in Computational Science and Engineering ( Hermosa Publishers, Albuquerque, 1998)spa
dc.relation.referencesB. E. Launder, G. J. Reece, and W. Rodi, “ Progress in the development of a Reynolds-stress turbulence closure,” J. Fluid Mech., 68, 537–566 (1975). https://doi.org/10.1017/S0022112075001814spa
dc.relation.referencesT. H. Shih, W. W. Liou, A. Shabbir, and J. Zhu, “ A new k-ε eddy-viscosity model for high Reynolds number turbulent flows—Model development and validation,” Comput. Fluids 24(3), 227–238 (1995). https://doi.org/10.1016/0045-7930(94)00032-Tspa
dc.relation.referencesP. R. Spalart and M. Shur, “ On the sensitization of turbulence models to rotation and curvature,” Aerosp. Sci. Technol. 1, 297–302 (1997). https://doi.org/10.1016/S1270-9638(97)90051-1spa
dc.relation.referencesH. Abbott and A. von Doenhoff, Theory of Wing Sections: Including a Summary of Airfoil Data ( Dover Publications, New York, 1959spa
dc.relation.referencesD. Montgomery, Design and Analysis of Experiments ( Wiley, New York, 2000spa
dc.relation.referencesJ. P. Baker, E. A. Mayda, and C. P. van Dam, “ Experimental Analysis of Thick Blunt Trailing-Edge Wind Turbine Airfoils,” J. Sol. Energy Eng. 128, 422–431 (2006). https://doi.org/10.1115/1.2346701spa
dc.relation.referencesP. Moin, A. Leonard, and J. Kim, “ Evolution of a curved vortex filament into a vortex ring,” Phys. Fluids 29, 955–963 (1986). https://doi.org/10.1063/1.865690spa
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccesseng
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalCross flow water turbineeng
dc.subject.proposalUnsteady CFD flow simulationeng
dc.subject.proposalTurbulence modeleng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501eng
dc.type.contentTexteng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFeng
oaire.accessrightshttp://purl.org/coar/access_right/c_16eceng
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85eng
dc.type.versioninfo:eu-repo/semantics/publishedVersioneng


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Derechos Reservados - Universidad Autónoma de Occidente
Except where otherwise noted, this item's license is described as Derechos Reservados - Universidad Autónoma de Occidente